RINGS SATISFYING MONOMIAL IDENTITIES

MOHAN S. PUTCHA AND ADIL YAQUB

ABSTRACT. The following theorem is proved: Suppose R is an associative ring and suppose that $w(x_1, \ldots, x_n)$ is a fixed word distinct from $x_1 \cdots x_n$. If, further, $x_1 \cdots x_n = w(x_1, \ldots, x_n)$, for all x_1, \ldots, x_n in R, then the commutator ideal of R is nilpotent. Moreover, it is shown that this theorem need not be true if the word w is not fixed.

Suppose R is an associative ring and suppose x_1, \ldots, x_n are elements of R. A word $w(x_1, \ldots, x_n)$ in x_1, \ldots, x_n is a product in which each factor is x_i for some $i = 1, \ldots, n$. Our present object is to prove

Theorem 1. Suppose R is an associative ring and suppose $w(x_1, \ldots, x_n)$ is a fixed word distinct from the word $x_1 \cdots x_n$. Suppose

1. $x_1 \cdots x_n = w(x_1, \ldots, x_n)$, for all x_1, \ldots, x_n in R.

Then there exists a positive integer m such that $R^mC(R)R^m = (0)$, where $C(R)$ is the commutator ideal of R. In particular, the commutator ideal of R is nilpotent.

Moreover, a counterexample is given which shows that Theorem 1 need not be true if $w(x_1, \ldots, x_n)$ is not a fixed word.

In preparation for the proof of Theorem 1, we first show the following lemmas.

Lemma 1. Suppose R is an associative semisimple ring, and suppose $w(x_1, \ldots, x_n)$ is a fixed word involving each of the elements x_1, \ldots, x_n of R. If, further,

2. $x_1 \cdots x_n = w(x_1, \ldots, x_n)$, for all x_1, \ldots, x_n in R,

then R is commutative.

Proof. Suppose, first, that R has an identity 1. We now distinguish two cases.

Case 1.

3. $x_1 \cdots x_n = w(x_1, \ldots, x_n) = x_{\sigma(1)} \cdots x_{\sigma(n)}$.
where \(\sigma \) is a permutation of \(\{1, \cdots, n\} \) distinct from the identity permutation. Then, for some integers \(i, j \), we have \(i < j \) but \(\sigma(i) > \sigma(j) \). Now, let \(a, b \in R \), and set in (3), \(x_{\sigma(i)} = a, x_{\sigma(j)} = b, \) \(x_k = 1 \) for all \(k \neq \sigma(i), k \neq \sigma(j) \), we get \(ba = ab \), and the lemma follows.

Case 2.

(4) \[x_1 \cdots x_n = w(x_1, \cdots, x_n), \]

some \(x_i \) appears at least twice in \(w(x_1, \cdots, x_n) \).

In this case, by setting \(x_1 = \cdots = x_{t-1} = x_{t+1} = \cdots = x_n = 1 \) in (4), we get

(5) \[x_i = x_i^k, \quad \text{for all } x_i \in R \quad (k > 1). \]

Hence \cite[p. 217]{2}, \(R \) is commutative, and the lemma follows again.

Returning to the general case, observe that, since \(R \) is semisimple, \(R \) is isomorphic to a subdirect sum of primitive rings \(R_i, i \in \Gamma \), each of which clearly satisfies (2). Since every subring and every homomorphic image of \(R \) satisfies (2), it follows \cite[p. 33]{2} that some complete matrix ring, \(\Delta_m \), over a division ring satisfies (2) also. Since \(\Delta_m \) has an identity, it follows (by the first part of this proof) that \(\Delta_m \) is commutative. Thus \(m = 1 \), and \(\Delta_m = \Delta \) is a field. Hence \cite[p. 33]{2} the primitive ring \(R \) is isomorphic to the field \(\Delta \). Thus \(R \) is isomorphic to a subdirect sum of fields, and hence \(R \) is commutative. This proves the lemma.

Next, we consider the case in which the word \(w(x_1, \cdots, x_n) \) satisfies (4). In this case, we can even say more. Indeed, we have

Lemma 2. Suppose \(R \) is an associative ring and suppose that \(C(R) \) and \(J \) denote the commutator ideal and Jacobson ideal of \(R \). Suppose that \(w(x_1, \cdots, x_n) \) is a fixed word involving each of the elements \(x_1, \cdots, x_n \) of \(R \). Suppose, moreover, that for some \(t, x_t \) appears at least twice in \(w(x_1, \cdots, x_n) \). If, further,

(6) \[x_1 \cdots x_n = w(x_1, \cdots, x_n), \quad \text{for all } x_1, \cdots, x_n \in R, \]

then (i) \(R/J \) is isomorphic to a subdirect sum of finite fields of orders bounded by the length of \(w \); (ii) \(C(R) \subseteq J \); (iii) \(J \) consists of precisely the set of nilpotent elements of \(R \).

Proof. Since \(R/J \) is a semisimple ring which, clearly, satisfies (6), it follows, by Lemma 1, that \(R/J \) is commutative, and hence \(R/J \) is isomorphic to a subdirect sum of fields \(F_i, i \in \Gamma \). Now, each \(F_i \) clearly satisfies (6), and hence by setting \(x_i = 1 \) for all \(i \neq t \) in (6), we obtain

(7) \[x_i = x_i^k, \quad \text{for all } x_i \in R \quad (k > 1). \]

Therefore \(F_t \) is a finite field with at most \(k \) elements, and, clearly, \(k \) is equal to or less than the length of the word \(w(x_1, \cdots, x_n) \). This proves (i).
Part (ii) follows at once, since R/J is commutative. Finally, to prove (iii), suppose $a \in J$, and set $x_i = a$, for all i, in (6). We get, $a^n = a^n a^l$ for some $l \geq 1$, and hence $a^n = 0$. Conversely, if a is nilpotent, then $\bar{a} = (a + J)$ is a nilpotent element in R/J, and hence by (i), $\bar{a} = 0$. Thus $a \in J$, and the lemma is proved.

Next, we prove

Lemma 3. Suppose R is an associative ring, and suppose J is the Jacobson radical of R. Suppose that $w(x_1, \cdots, x_n)$ is a fixed word involving each of the elements x_1, \cdots, x_n of R and in which some x_i appears at least twice. Suppose, moreover, that

\[x_1 \cdots x_n = w(x_1, \cdots, x_n), \quad \text{for all } x_1, \cdots, x_n \text{ in } R. \tag{8} \]

Then, for some i, $1 \leq i \leq n$, we have $R^{i-1}JR^{n-i} = (0)$.

Proof. By Lemma 2 (iii), J is a nil ring. Now, let $a \in J$, and set in (8), $x_1 = \cdots = x_n = a$, we get $a^n = a^n a^l$, for some $l \geq 1$. Therefore the nil ring J satisfies $a^k = 0$, and thus [1, p. 28] J is locally nilpotent. Next, let $a_1, \cdots, a_n \in J$. Then the ring generated by a_1, \cdots, a_n is nilpotent, say of index k. Now, by reiterating (8) until the length of the word $w(x_1, \cdots, x_n)$ in the right-hand side becomes $\geq k$, it follows that $a_1 \cdots a_n = 0$, and hence $J^n = (0)$. Next, since x_i appears at least twice in the word $w(x_1, \cdots, x_n)$, we can, by reiterating in (8), obtain a word $w'(x_1, \cdots, x_n)$ of length $\geq n^2$ and such that

\[x_1 \cdots x_n = w'(x_1, \cdots, x_n), \quad \text{for all } x_1, \cdots, x_n \text{ in } R. \tag{9} \]

Observe that in the word $w'(x_1, \cdots, x_n)$, some x_i appears at least n times. We now fix i, and substitute $x_i = a$; $x_j = r_j$, $j \neq i$, where each $r_j \in R$, we get

\[r_1 \cdots r_{i-1} a r_{i+1} \cdots r_n \in J^n = (0). \]

Hence, $R^{i-1}JR^{n-i} = (0)$, and the lemma is proved.

Our final lemma is true for semigroups (and hence, *a fortiori*, for rings), and has been proved in [4, Theorem 1].

Lemma 4. Let S be a semigroup such that, for all x_1, \cdots, x_n in S,

\[x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)}, \]

where σ is a fixed permutation of $\{1, \cdots, n\}$ distinct from the identity permutation. Then there exists an integer m such that, for all u, v in S^m and all x, y in S, we have $uxyv = uyxv$.

We are now in a position to prove Theorem 1.
Proof of Theorem 1. First, suppose the word $w(x_1, \cdots, x_n)$ does not involve x_i, for some i. In (1), set $x_i=0$ and, for $j \neq i$, let x_j be arbitrary; we get $w(x_1, \cdots, x_n) \equiv 0$ and hence, by (1), $x_1 \cdots x_n = 0$ for all x_1, \cdots, x_n in R (since $w(x_1, \cdots, x_n)$ is fixed). Thus $R^n = (0)$, and Theorem 1 follows at once. Next, suppose $w(x_1, \cdots, x_n) = x_{\sigma(1)} \cdots x_{\sigma(n)}$, for some permutation σ of $\{1, \cdots, n\}$ different from the identity. Then, by Lemma 4,

$$u(xy - yx)v = 0, \quad \text{for all } u, v \in R^n \text{ and all } x, y \in R.$$

Hence, $R^n C(R) R^n = (0)$, and Theorem 1 follows again. The only case left is when $w(x_1, \cdots, x_n)$ involves each x_i and, moreover, some x_i appears at least twice in $w(x_1, \cdots, x_n)$. By Lemmas 2 and 3 we have $R^{i-1} C(R) R^{n-i} \subseteq R^{i-1} J R^{n-i} = (0)$, for some i, $1 \leq i \leq n$, and once again the theorem follows. This completes the proof.

Corollary. Suppose R is an associative semiprime ring satisfying the hypothesis of Theorem 1. Then R is commutative.

Proof. Since R is a semiprime ring, the prime radical of R is (0) [3, p. 146], and hence R contains no nonzero nilpotent ideals. Now, by Theorem 1, the commutator ideal, $C(R)$, of R is nilpotent, and hence $C(R) = (0)$. Therefore R is commutative, and the corollary is proved.

We conclude with the following

Remark. Theorem 1 need not be true if we replace the fixed word $w(x_1, \cdots, x_n)$ by a “variable” word (depending on x_1, \cdots, x_n). For, suppose R is the complete matrix ring, $(GF(2))_2$, of all 2×2 matrices over $GF(2)$. It is easily verified that

$$x_1 x_2 = x_1 x_2^2 \quad \text{if } x_1 \text{ is invertible or idempotent},$$

$$= x_1 x_2^7 \quad \text{if } x_2 \text{ is invertible or idempotent},$$

$$= (x_1 x_2)^2 \quad \text{otherwise.}$$

However, the commutator ideal of $(GF(2))_2$ is not even nil. In verifying (10), observe that (i) $x^8 = x^8$ holds in $(GF(2))_2$; (ii) every matrix in $(GF(2))_2$ is invertible, or idempotent, or nilpotent; (iii) the product of any two nilpotent matrices in $(GF(2))_2$ is idempotent.

In conclusion, we wish to express our indebtedness and gratitude to the referee for his suggestions which resulted in shorter proofs and stronger results.

References

Department of Mathematics, University of California, Santa Barbara, California 93106

Current address (Putcha): Department of Mathematics, University of California, Berkeley, California 94720