
proceedings of the
american mathematical society
Volume 32, Number 1, March 1972

THE NUMBER  OF  ISOTYPE  AND  /-PURE   SUBGROUPS

OF AN ABELIAN />-GROUP

PAUL  HILL

Abstract. The number of isotype subgroups of an abelian

/7-group G is determined. This solves a recent problem of Fuchs.

Actually, we accomplish slightly more. Define a subgroup H of an

abelian/)-group G to be an /-pure subgroup of G if, for some ordinal

A, H is /^-pure in G and pxH is divisible. We compute the number

of /-pure subgroups of G and show that the number of /-pure sub-

groups and the number of isotype subgroups of G coincide. Our

final result deals with the number of nonisomorphic isotype sub-

groups of G when G is a direct sum of countable groups.

In this paper all groups are abelian, and "abelian group" is shortened

to "group". For the most part, our notation and terminology agree with

[2]. However, for the convenience of the reader we list the meaning of the

following frequently used symbols and terms.

+ : direct sum.

2: direct sum (of an infinite family).

\X\ : cardinality of X.

1(G): the length of a reduced />group G.

p'G[p]: (p°G)[pl
c: cardinality of the continuum, 2Xo.

w, Q: the first infinite ordinal and the first uncountable ordinal, respec-

tively.

isotype subgroup: H is an isotype subgroup of the /»-group G if

p"Gr\H=pc'H for every ordinal a.

/-pure subgroup: H is an /-pure subgroup of the/?-group G if, for some

ordinal X, H is //-pure in G and pxH is divisible; recall that H is //-pure

in G if Hy-*G-s>G/// belongs top* Ext(G/#, H).
subsocle: a subsocle of a/7-group G is any subgroup of G[p],

In [2] Fuchs raised the question: What is the cardinality of the set of all

pure subgroups of a group G? The answer to this problem was provided

by the combination of two papers, one by Boyer [1] and the other by

Hill [4]. In his new book [3], Fuchs has presented as Problem 20(a):
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What is the cardinality of the set of [nonisomorphic] isotype subgroups of

a /»-group G? We can answer completely the primary question: What is

the cardinality of the set of isotype subgroups of G? We suggest that the

theory of abelian groups may not yet be advanced enough to solve, in a

meaningful way, the secondary problem of determining for all /»-groups

G the number of nonisomorphic isotype subgroups. However, this is

certainly possible for many special cases of G. For example, if G is a

/»-group of cardinality c without elements of infinite height having a

countable basic subgroup, then G has 2" isomorphically distinct isotype

subgroups according to Theorem 2.3 of [7]. In the present paper (Theorem

3), we determine the number of isomorphically distinct isotype subgroups

of a /»-group G of countable length that can be written as a direct sum of

less than Xn countable groups.

Lemma 1. Let G be a p-group. Suppose, for an ordinal a, that mx<m^.

X0 where ma=\G [p]lp"G[p] | and m = | G [/»] |. Let S be a subsocle of G such

that Sr\p"G[p]=0. If T is a subsocle of G such that \T\<m and such that

TP\S=0, then there exists S*^G[p] such that:

(1) S*^S,
(2) S*+p'G[p]=G[p],
(3) S*n7=0.

Proof. First, choose R^ S such that R is maximal in G[p] with respect

to Rr\p"G[p]=0. Then S*=R satisfies conditions (1) and (2). If/in 7=0,
the proof is finished. Thus we may assume that Rr\T?^0. Write paG[p] =

2ieJ {J,}> and note that \J\=m. Since G[p]=R+^jsJ {y¡}, we have, for

a suitable choice of the basis {vj ,that {R, T}=R+~£jeK {y}} for some

subset K of/. Also, |Ä^|<|/|=«2 since 7 has cardinality less than m.

Write R = S+W, and set W=2<£i {■*<}■ Observe that |/-Är|=w>wI[=|/|,

so there exists a one-to-one function i-+j(i) from / into J—K. Set x¡ =

xi+yni) f°r eacn fe/and define S*=S+][ieI {x¡}.

Obviously, 5*25'and S*+p"G[p] = G[p]. Moreover, S'*n7=0; for if

0^(i+2 tiiX^eT where seS and nt is an integer satisfying 0^«^/», then

2 niym E{R,T} = R + l {y,},

which implies that 2 n{yjU)=Q in view of the decomposition

G[P] = R + i{yj}+ 2 {y,}
isK jeJ-K

since j(i)eJ—K. We conclude that «¿=0 for each /' and that O^seT, but

this is a contradiction that 5'n7=0. Therefore 5*n7=0, and the lemma

is proved.
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Theorem 1. Let G be an infinite reduced p-group. Then either G con-

tains an l-pure subgroup H of G such that

(A) |//| = |G|and/(//)</(G),

or G contains a subsocle S such that

(B) \G[p\jS\ = \G\ and{p'G[p], S}=G[p)for each a</(G).

Proof. Let X denote 1(G) and let m=\G\ = \G[p] \. There are two cases

to consider depending on whether X is an isolated or a limit ordinal.

Case 1. X-l exists. Let G[/7]=S,+/"1G[/>]. If |/_1G[/>]|=«î, then

(B) holds for S. However, if \pk'xG{p\\<m, then \S\=m. Choose H

maximal in G with respect to H[p]—S. By [6, Proposition 2], H is //-pure

in G. Thus H is an /-pure subgroup of G satisfying (A).

Case 2.   A is a limit. There exists an ascending chain

0 = S0 ç & ç Sa £ • • • £ Sa S • • • ,       a < A,

of subsocles S; of G such that 5a+/?c<G[/)]=G[/?]. If |SJ=/w for any

ol<X, then, as in Case 1, we take H maximal in G with respect to H[p] =

Sx and obtain an /-pure subgroup H of G satisfying condition (A). Thus

we may assume that \Sx\<m for each <x<A. For simplicity of notation,

let mx=\SJ. We shall employ Lemma 1 in order to obtain a subsocle S

of G satisfying condition (B). Suppose [i<X and that for each a.<fi a

subsocle Tx of G has been chosen such that, for suitable choices of the

S^'s (satisfying Sx+p"G[p] = G[p]), we have the following:

(a) r.S^ifa^^,

(b) SxnTß=Oif<z,ß<p,

(c) \Tx\ = \Sx\=mx if ct<p.

We wish to define Tß such that conditions (a)-(c) continue to hold for

a, ß^fi. If //— 1 exists, let 7^ be any subsocle of G containing T^y that

has cardinality «?/I=|5/i| and has trivial intersection with S^, recall that

m;i<«3, so this is possible. By Lemma 1, we can choose ,S/12.S'fl_1 such

that ^,,07^ = 0; we remark that \SX\ is independent of the choice of Sx.

Clearly, conditions (a)-(c) hold for a, ß^fi.

If/^ is a limit ordinal, set T=[JX<I¡ Ta and observe that

|T| = sup {|TJ} = sup {m„} = sup {|SJ} = |S„| = m)L<m.
a<fi ix<p a<fi

Therefore, we can extend T to a subsocle 7^ satisfying \Tft\=mlt and

(Ua<i-'S'a)n7,/<=0- Again> by Lemma 1, we can choose Sfl^\Jx<llSx

such that 5'iin7'/J=0, and conditions (a)-(c) remain valid for a, /?</«.

This completes the induction, and we may assume (a)-(c) for all <x<A.

Set S=U<*<A s« and T=\J*<x T*- Then Snr=0, and from the equation
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Sx+p"G[p] = Gíp] we see that {S,p"G[/»]} = G[p] for each <x<A. Since

|7| = sup{|7J} = sup{mJ = |S|,

we conclude that \G[p]/S\ = \G\ if |5| = |G|. Trivially, \G[p]/S\ = \G\ if
|5|<|G|. Thus, in either case, the subsocle S satisfies condition (B).

Theorem 2. Let G be a p-group. The number of l-pure subgroups of G

is 2|G| unless the reduced part of G is finite and the divisible part of G is

zero or a single z(p°°); in the exceptional case, the number of l-pure sub-

groups of G is finite.

Proof. First, suppose that G is divisible and let G=2mz(/»°°). If m

is uncountable, then m=\G\. Thus if m is uncountable, obviously G has

2|G| direct summands. In [4] it was shown that z(pCD)+z(pœ) has a con-

tinuum number of direct summands. It follows easily that if G=2mz(/>cc)

with m_2, then G has 2|G| direct summands. Any summand is, of course,

/-pure. Now let G be an arbitrary/»-group, and write G = D+R where D

is divisible and R is reduced. If |/?| = |G| = N0, then we may assume that

G=R because an /-pure subgroup of R is an /-pure subgroup of G. Hence

we may assume that G is either an infinite reduced group or else G = D + A

where A is finite and D is zero or z(/»°°); the other possibility is for

G = D+R where |G| = |Z)| and D is the sum of two or more copies of

z(/»°°), but in this case there is no loss of generality in assuming that G=D,

which we have already considered. If G=D+A where A is finite and D

is zero or z(px), then, as proved in [4], G has only a finite number of

pure subgroups, so G has only a finite number of/-pure subgroups (each

of which is actually a direct summand of G).

Now G is an infinite reduced group, and we want to show that G has

2|G| /-pure subgroups. The proof is by induction on 1(G). If 1(G) is 1,

then G is a vector space over Z/pZ. Since Z/pZ is finite and G is infinite,

dim(G) = |G|. Hence G has 2|G| direct summands, so G has 2|G| /-pure

subgroups. We proceed to the general case. If G has an /-pure subgroup H

satisfying condition (A) of Theorem 1, then the transitivity of/-purity [10]

and the induction hypothesis yield 2|G| /-pure subgroups of G. Therefore,

we may assume, by Theorem 1, that G has a subsocle S satisfying con-

dition (B). Since \G[p]/S\ = \G\, there exist 2|G| subsocles 7 of G containing

S. Since {p'Glp], 7}=G[/»], if <x</(G), for any subsocle 7of G containing

S, it follows from [6, Proposition 1] that any subgroup H oí G maximal

in G with respect to H[p] = 7 is /-pure in G. Thus there exist 2|G| /-pure

subgroups of G.

Corollary 1. The number of l-pure subgroups and the number of

isotype subgroups coincide for any p-group G. Therefore, the number of

isotype subgroups of a p-group G is given by Theorem 2.
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Proof. Since any /-pure subgroup is necessarily an isotype subgroup

by [8, Theorem 15] and since G has at most 2|G| subgroups, the corollary

follows immediately for all G not in the exceptional case of Theorem 2.

Thus we need only to prove that G has the same number of /-pure sub-

groups as it does isotype subgroups in case G = D+A where A is finite

and D is zero or z(pœ). However, it is well known (and easy to prove)

that any pure subgroup of such a group G is necessarily a direct summand

of G, so the concepts of pure subgroup, isotype subgroup, /-pure sub-

group, and direct summand all coincide in this case.

We now present the result that we promised in the introduction con-

cerning the number of nonisomorphic isotype subgroups.

Theorem 3. Let G be a direct sum of reduced countable p-groups. If

G is unbounded, has countable length, and if G has cardinality Hxfor some

countable ordinal a, then G has exactly a continuum number of nonisomorphic

isotype subgroups.

Proof. In order to show that G has at least a continuum number of

isomorphically distinct isotype subgroups, we observe that G = H+K

where H is an unbounded direct sum of cyclic groups. Indeed, any

unbounded reduced countable /7-group has such a decomposition in view

of Ulm's theorem. It obviously suffices to show that H has a continuum

number of isomorphically distinct isotype subgroups, but clearly H even

has a continuum number of isomorphically distinct direct summands.

Now we prove that G has at most a continuum number of isomorphi-

cally distinct isotype subgroups. In order to prove this, we need the

author's theorem that implies that any isotype subgroup H of G is itself

a direct sum of countable groups [6], and therefore H is determined, up

to isomorphism, by its Ulm invariants [9], [5]. It remains only to observe

that since 1(G) is countable H has at most a countable number of nonzero

Ulm invariants each of which is a cardinal not exceeding |G| = Xa<S£2.

Remarks. One interesting consequence of Theorem 3 is the following.

Suppose that the unbounded reduced />-group G is restricted to countable

length and is a direct sum of countable groups. Then within the bounds

^o= |G|< Nn an increase in the size of G does not increase the number of

nonisomorphic isotype subgroups of G. In particular, if the (generalized)

continuum hypothesis is assumed, G can be quite large and have relatively

few isomorphically distinct isotype subgroups. Finally, we remark that it

is a simple exercise to show that if G is a bounded />-group, then G has

exactly Yii=o mi isomorphically distinct isotype subgroups where pk+1 is

the smallest bound on G and w, is the number of cardinals not exceeding

the ¡th Ulm invariant of G.
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