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THE NUMBER OF ISOTYPE AND /-PURE SUBGROUPS
OF AN ABELIAN p-GROUP

PAUL HILL

ABSTRACT. The number of isotype subgroups of an abelian
p-group G is determined. This solves a recent problem of Fuchs.
Actually, we accomplish slightly more. Define a subgroup H of an
abelian p-group G to be an I-pure subgroup of G if, for some ordinal
A, H is p*-pure in G and p*H is divisible. We compute the number
of l-pure subgroups of G and show that the number of /-pure sub-
groups and the number of isotype subgroups of G coincide. Our
final result deals with the number of nonisomorphic isotype sub-
groups of G when G is a direct sum of countable groups.

In this paper all groups are abelian, and “abelian group” is shortened
to “group”. For the most part, our notation and terminology agree with
[2]. However, for the convenience of the reader we list the meaning of the
following frequently used symbols and terms.

+: direct sum.

>t direct sum (of an infinite family).

|X|: cardinality of X.

I(@): the length of a reduced p-group G.

PGlpl: (p°G)pl.

c: cardinality of the continuum, 2%,

o, Q: the first infinite ordinal and the first uncountable ordinal, respec-
tively. '

isotype subgroup: H is an isotype subgroup of the p-group G if
p*GNH=p"H for every ordinal o.

l-pure subgroup: H is an /-pure subgroup of the p-group G if, for some
ordinal 4, H is p*-pure in G and p*H is divisible; recall that H is p*-pure
in G if H »»G —G/H belongs to p* Ext(G/H, H).

subsocle: a subsocle of a p-group G is any subgroup of G[p].

In [2] Fuchs raised the question: What is the cardinality of the set of all
pure subgroups of a group G ? The answer to this problem was provided
by the combination of two papers, one by Boyer [1] and the other by
Hill [4]. In his new book [3], Fuchs has presented as Problem 20(a):
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What is the cardinality of the set of [nonisomorphic] isotype subgroups of
a p-group G? We can answer completely the primary question: What is
the cardinality of the set of isotype subgroups of G? We suggest that the
theory of abelian groups may not yet be advanced enough to solve, in a
meaningful way, the secondary problem of determining for all p-groups
G the number of nonisomorphic isotype subgroups. However, this is
certainly possible for many special cases of G. For example, if G is a
p-group of cardinality ¢ without elements of infinite height having a
countable basic subgroup, then G has 2° isomorphically distinct isotype
subgroups according to Theorem 2.3 of [7]. In the present paper (Theorem
3), we determine the number of isomorphically distinct isotype subgroups
of a p-group G of countable length that can be written as a direct sum of
less than R, countable groups.

LemMa 1. Let G be a p-group. Suppose, for an ordinal o, that m,<mz=
R, where m,=|G|[p]/p*G[pll and m=|G[p]|. Let S be a subsocle of G such
that SNp*G[pl=0. If T is a subsocle of G such that |T|<m and such that
TNS=0, then there exists S*< G|[p] such that:

(1) $*=8,

(2) S*+p*G[pl=Glp],

3) S*NT=0.

Proor. First, choose R2 S such that R is maximal in G[p] with respect
to RNp*G[p]=0. Then S$*=R satisfies conditions (1) and (2). If RNT=0,
the proof is finished. Thus we may assume that RNT30. Write p*G[p]=
>er {¥;}, and note that |[J|=m. Since G[p]=R+ > ,.s {r,;}, we have, for
a suitable choice of the basis {y;} ,that {R, T}=R+ 3 ;.x {y;} for some
subset K of J. Also, |K|<|J|=m since T has cardinality less than m.
Write R=S+ W, and set W=, {x,}. Observe that |J—K|=m>m,=|I|,
so there exists a one-to-one function i—j(i) from I into J—K. Set x;=
X;+Y; for each iel and define S*=S+ > .; {xi}.

Obviously, $*=2 S and S*+4-p“G[p]=G[p]. Moreover, S* NT=0; for if
05£(s+ 2, n;x;)eT where s€S and #, is an integer satisfying 0=n,<p, then

2nyim€{R, T} =R+ .ZK{J’J'}’
JE
which implies that 3 n,y;;,=0 in view of the decomposition

Glpl=R+ 2> {y}+ 2 {rv}

jeK jeJ—K
since j(i)eJ—K. We conclude that n,=0 for each i and that 0s%seT, but
this is a contradiction that SNT=0. Therefore S*NT=0, and the lemma
is proved.
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THEOREM 1. Let G be an infinite reduced p-group. Then either G con-
tains an l-pure subgroup H of G such that

(A) |H|=|G| and I(H)<I(G),
or G contains a subsocle S such that

(B) IGIp)/S|=IG| and {p*Glp], S}=Glp) for each 2 <I(G).

Proor. Let 4 denote /(G) and let m=|G|=|G[p]|. There are two cases
to consider depending on whether 2 is an isolated or a limit ordinal.

Case 1. A—1 exists. Let G[p]=S+p*'G[p]. If |p*'G[p]l=m, then
(B) holds for S. However, if Ip"lG[p]|<m, then |S|=m. Choose H
maximal in G with respect to H[p]=S. By [6, Proposition 2], H is p*-pure
in G. Thus H is an /-pure subgroup of G satisfying (A).

Case 2. A is a limit. There exists an ascending chain

0=S,c5cS, ¢85, <", a < A,

of subsocles S, of G such that S,+p*G[p]=G[p]. If |S,|=m for any
a< A, then, as in Case 1, we take A maximal in G with respect to H[p]=
S, and obtain an /-pure subgroup H of G satisfying condition (A). Thus
we may assume that |S,|<m for each a<A. For simplicity of notation,
let m,=|S,|. We shall employ Lemma 1 in order to obtain a subsocle S
of G satisfying condition (B). Suppose #<A and that for each a<u a
subsocle T, of G has been chosen such that, for suitable choices of the
S,’s (satisfying S,+p*G[p]=G[p]), we have the following:

(a) T,=T; if a<B<pu,

(b) S,NT=0if «, < u,

© IT)=IS=m, if a<p.

We wish to define T, such that conditions (a)—(c) continue to hold for
o, f=p. If u—1 exists, let T, be any subsocle of G containing T,,_, that
has cardinality m,=|S,| and has trivial intersection with S,; recall that
m,<m, so this is possible. By Lemma I, we can choose §,25,_; such
that S, NT,=0; we remark that |S,| is independent of the choice of S,.
Clearly, conditions (a)-(c) hold for «, B=u.

If w is a limit ordinal, set T=|J,., T, and observe that

IT| = sup {|T,I} = sup {m,} = sup {|S,|} = IS,| = m, <m.
a<p a<p a<p

Therefore, we can extend T to a subsocle T, satisfying |T,|=m, and
(Ua<cu SINT,=0. Again, by Lemma 1, we can choose S,2 o<y S.
such that S,N7,=0, and conditions (a)-(c) remain valid for «, f<pu.
This completes the induction, and we may assume (a)-(c) for all a<A.
Set S=,<1 S, and T=J,, T,. Then SNT=0, and from the equation
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S,+p*G[pl=G|p] we see that {S, p*G[p]}=G|[p] for each «<A. Since
IT| = sup {IT,I} = sup {m,} = [Sl,

we conclude that |G[p]/S|=|G]| if |S|=|G|. Trivially, |G[p]/S|=I|G| if
|S|<|G]. Thus, in either case, the subsocle .S satisfies condition (B).

THEOREM 2. Let G be a p-group. The number of l-pure subgroups of G
is 2'%! unless the reduced part of G is finite and the divisible part of G is
zero or a single z(p®); in the exceptional case, the number of I-pure sub-
groups of G is finite.

Proor. First, suppose that G is divisible and let G=3,, z(p%). If m
is uncountable, then m=|G|. Thus if m is uncountable, obviously G has
26! direct summands. In [4] it was shown that z(p®)+z(p®) has a con-
tinuum number of direct summands. It follows easily that if G=3,, z(p*)
with m=2, then G has 2!6! direct summands. Any summand is, of course,
I-pure. Now let G be an arbitrary p-group, and write G=D+ R where D
is divisible and R is reduced. If |R|=|G|Z= R,, then we may assume that
G =R because an /-pure subgroup of R is an /-pure subgroup of G. Hence
we may assume that G is either an infinite reduced group or else G=D+4
where A is finite and D is zero or z(p”); the other possibility is for
G=D+R where |G|=|D| and D is the sum of two or more copies of
z(p™), but in this case there is no loss of generality in assuming that G=D,
which we have already considered. If G=D+A4 where A4 is finite and D
is zero or z(p~), then, as proved in [4], G has only a finite number of
pure subgroups, so G has only a finite number of /-pure subgroups (each
of which is actually a direct summand of G).

Now G is an infinite reduced group, and we want to show that G has
2!6! I-pure subgroups. The proof is by induction on /(G). If I(G) is 1,
then G is a vector space over Z/pZ. Since Z[pZ is finite and G is infinite,
dim(G)=|G|. Hence G has 2!6! direct summands, so G has 2!¢! [-pure
subgroups. We proceed to the general case. If G has an /-pure subgroup A
satisfying condition (A) of Theorem 1, then the transitivity of /-purity [10]
and the induction hypothesis yield 2!%! /-pure subgroups of G. Therefore,
we may assume, by Theorem 1, that G has a subsocle S satisfying con-
dition (B). Since |G[p]/S|=|G]|, there exist 2% subsocles T of G containing
S. Since {p°G[p], T}=G[p], if «<I(G), for any subsocle T of G containing
S, it follows from [6, Proposition 1] that any subgroup H of G maximal
in G with respect to H[p]=T is l-pure in G. Thus there exist 2!/¢! /-pure
subgroups of G.

COROLLARY 1. The number of Il-pure subgroups and the number of
isotype subgroups coincide for any p-group G. Therefore, the rumber of
isotype subgroups of a p-group G is given by Theorem 2.
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PROOF. Since any /-pure subgroup is necessarily an isotype subgroup
by [8, Theorem 15] and since G has at most 2!¢! subgroups, the corollary
follows immediately for all G not in the exceptional case of Theorem 2.
Thus we need only to prove that G has the same number of /-pure sub-
groups as it does isotype subgroups in case G=D+A4 where 4 is finite
and D is zero or z(p™). However, it is well known (and easy to prove)
that any pure subgroup of such a group G is necessarily a direct summand
of G, so the concepts of pure subgroup, isotype subgroup, /-pure sub-
group, and direct summand all coincide in this case.

We now present the result that we promised in the introduction con-
cerning the number of nonisomorphic isotype subgroups.

THEOREM 3. Let G be a direct sum of reduced countable p-groups. If
G is unbounded, has countable length, and if G has cardinality X, for some
countable ordinal a, then G has exactly a continuum number of nonisomorphic
isotype subgroups.

PROOF. In order to show that G has at least a continuum number of
isomorphically distinct isotype subgroups, we observe that G=H+K
where H is an unbounded direct sum of cyclic groups. Indeed, any
unbounded reduced countable p-group has such a decomposition in view
of Ulm’s theorem. It obviously suffices to show that H has a continuum
number of isomorphically distinct isotype subgroups, but clearly H even
has a continuum number of isomorphically distinct direct summands.

Now we prove that G has at most a continuum number of isomorphi-
cally distinct isotype subgroups. In order to prove this, we need the
author’s theorem that implies that any isotype subgroup H of G is itself
a direct sum of countable groups [6], and therefore H is determined, up
to isomorphism, by its Ulm invariants [9], [S]. It remains only to observe
that since /(G) is countable H has at most a countable number of nonzero
Ulm invariants each of which is a cardinal not exceeding |G|=R, < X,,.

REMARKS. One interesting consequence of Theorem 3 is the following.
Suppose that the unbounded reduced p-group G is restricted to countable
length and is a direct sum of countable groups. Then within the bounds
R, =<|G|< R, an increase in the size of G does not increase the number of
nonisomorphic isotype subgroups of G. In particular, if the (generalized)
continuum hypothesis is assumed, G can be quite large and have relatively
few isomorphically distinct isotype subgroups. Finally, we remark that it
is a simple exercise to show that if G is a bounded p-group, then G has
exactly [Tk, m; isomorphically distinct isotype subgroups where p*+! is
the smallest bound on G and m; is the number of cardinals not exceeding
the ith Ulm invariant of G.
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