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FUBINI THEOREMS FOR ORLICZ  SPACES OF

LEBESGUE-BOCHNER MEASURABLE FUNCTIONS

VERNON  ZANDER1

Abstract. Let (X, V, v) be the volume space formed as the

product of the volume spaces (X,, Vu v¡) (» = 1, 2). Let (p,q) be a

pair of complementary (continuous) Young's functions, let Y, Z,

Zlt Z2, W be Banach spaces, let w be a multilinear continuous

operator on YxZ1xZ2->-lV. Let Lv(v, Y) be the Orlicz space of

Lebesgue-Bochner measurable functions generated by p, and let

Ka(v, Z) be the associated space of finitely additive Z-valued set

functions. The principal result of this paper is as follows: Let

fELv(v, Y), fi2EKQ(v2,Z2). Then (a) the function f(xlt-) is v2-

Orlicz summable u^a.e. ; (b) the operator r(f, /i2) defined by the

expression r(f /«2)(^i) = í wx(f(xu x2),ii2(dx2)) t>i-a.e. is bilinear

and continuous from Lv(v, Y)xKa(v2,Z2) into Lv{vi,Y^)¡N,

where »i(v, z2)=w(y, z2), where Fj is the Banach space of bounded

linear operators from Z¡ into W, and where TV is the set of Yx-

valued «i-measurable functions of zero seminorm; (c) the equality

J w(f,d/i1,dß2) = 5 wa(r(f,ii2),dni) holds for all fELv(v, Y),
UiEKçiv^Zi) (í=l,2), where wn(yuzj^y^zj for all yiEYu

ZiEZx.

The purpose of this paper is to complete the basic integration theory for

the Orlicz spaces of Bochner measurable functions. In establishing the

initial part of this theory of Orlicz spaces, Diestel [4] established the

following results: a characterization of convergence, a monotone con-

vergence theorem, a dominated convergence theorem, and the density

of simple functions in the Orlicz space. The Fubini type results of this paper

essentially complete the basic theory of Orlicz spaces of Bochner summable

functions.
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The Orlicz spaces treated in this paper deviate from the classical Orlicz

spaces in that, instead of their being generated from the usual measure

space, we shall generate them from a volume space and from the ensuing

integration theory of Bogdanowicz [1]. The volume space is a natural

environment for Fubini type theorems. That it is also a valid environment

is established by the work of Diestel [4] and by the extensive work of

Bogdanowicz (see [3] for a suitable bibliography). The notions of volume

and prering are not alien to integration theory, since a family of measur-

able sets on which a measure is finite is a prering and the measure restricted

to this domain is a volume.

1. Preliminaries. This paper will follow the notation of Diestel [4]. The

principal deviation from standard Orlicz space notation is that we will use

the letters p, q for the complementary Young's functions. Abbreviations

of the form Th. 1, Th. 3 and so on, will refer to the corresponding results

in reference [4], The underlying integration theory we shall assume in this

paper is the theory developed by W. Bogdanowicz [1].

Let F be a family of subsets of an abstract set X such that for any two

sets A, B from F we have A oBeV and A—B is a finite union of disjoint

sets from V. The family V is called a prering.

A nonnegative, real-valued function v defined on the prering Fis called

a volume if for every countable family of disjoint sets AteV (teT) such that

A = {Jt£T A,eV we have v(A)=%T v(At).

The triple (X, V, v) is called a volume space. For Y a Banach space the

space S(V, Y) of F-simple T-valued functions and the space L(v, Y) of

Lebesgue-Bochner summable functions are defined in Bogdanowicz [1],

as are the notions of r-null sets and u-a.e. The space M(v, Y) of F-valued

immeasurable functions is defined in Bogdanowicz [2].

Let (p, q) be a pair of nonegative, real-valued functions defined on the

interval [0, co) such that p is continuous from (0, oo) onto (0, co) and

differentiable with derivative p' on (0, oo), p is a homeomorphism of

(0, oo) with itself such that if (p')~l denotes the inverse function of p then

q(x) = [\P')-\t)dt.
Jo

Then (p, q) are called complementary Young's functions.

We say that the function p satisfies the A2-condition if there exists a

constant M>0 such that p(2x)^Mp(x) for all nonnegative x. We say that

the function p satisfies the A'-condition if there exists a constant /c>0 such

that p(xy)^kp(x)p(y) for all nonnegative x and y.

Let Y, Z, W be Banach spaces and let U be the space of all bilinear

continuous operators on the space YxZ into the space W. Denote the
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norms of the above spaces by |-|. Assume that uell. Let (X, V, v) be a

volume space and let (p, q) be a pair of complementary Young's functions.

Let Lv(v, Y) be the space of functions/mapping the space X into the

space Y which satisfy the following conditions:

(i) /is u-locally summable (that is, cAfEL(v, Y) for all AeV);

(ii) /has a support from Va (that is, there exist A¡eV, i=l, 2, ■ • • , such

that/(x)=0if^LM¿);
(iii) ll/llJ,,„<°o, where the functional \\f\\p,v is defined by the formula

•» = SUP(i l/l s dv.s E Q(v, R+)

where Q(v, R+), which shall be called the norming set for the space

Lv(v, Y), is the set of all nonnegative K-simple functions s such that

j qos dv^l.

According to Th. 2 the space (Lp(v, Y), \\-\\P,v) is a complete semi-

normed linear space. If it is assumed that the Young's function p satisfies

the A2-condition then the space S(V, Y) of simple functions is dense in the

space Lv(v, Y). If we define the functional IIMIij, on the space Lv(v, Y) by

the expression

, = infik >0:jp(ffk)dv g l\

then it follows easily from Young's inequality and from Th. 4 that |¡|- P is

a seminorm on L„(v, Y) which is equivalent to the seminorm ||-||„-t,.

2. Spaces of finitely additive set functions. In this section we shall

discuss two spaces of finitely additive set functions which are related to the

Orlicz space Lv(v, Y), one space of which has two equivalent formulations.

For Z a Banach space and ueU let Kau(v, Z) be the space of all finitely

additive functions ¡i mapping the prering V into the Banach space Z such

that fi(A)=0 if r(^)=0 and the functional \\fi\\<,,u is finite, where

lli"ll,,« = sup Zu(yi,fi(At)): y i e Y, {Ai} is a finite family

of disjoint sets from V and

It is clear that the space Kq¡u(v, Z) is a seminormed space.

Let Ka(v, Z) be the space of finitely additive functions ¡x mapping the

prering V into the Banach space Z such that ^(^4)=0 if v(A)=0 and the
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functional \\p\\a is finite, where

llyull, = sup 2 «<\KA,)\'-at = °. iAi} is a finite family

of disjoint sets from V and
i 1

We notice that the space Ka(v, Z) is a subset of the space Ka u(v, Z) and

ML„=?M IN« for all peKQ(v,Z).
Denote by AQ(v, Z) the space of all finitely additive functions p from the

prering V into the space Z which satisfy the following conditions: (i)

p(A)=0 when v(A)=0, for AeV, (ii) Ia(p/k)^l for some positive fc,

where the function IQ is defined by the following expression :

IM) = sup 2 {q(HA)\lv(A))v(A):A e &}

where the supremum is taken over all finite families !F of disjoint sets from

the prering V (we observe the convention 0/0=0 here and throughout).

By Theorem 11 of Uhl [7] the functional Na defined by

iV» = inf{Â: > 0:Ia(p¡k) ^ 1}

is a norm under which the space Aq(v, Z) is a Banach space.

Proposition 1. The sets K„(v,Z) and Aq(v,Z) are equal, and the

respective norms satisfy the following inequality:

Na(p) = M, := 2JV»   for all p e Kq(v, Z).

Proof. The proof of Lemma 7 of Rao [6, p. 563] applies here, with

only the obvious changes needed.

It follows from Proposition 1 that the space Ka(v, Z) is a Banach space.

Let seS(V, Y) and fxeKQM(v,Z). Define the integral ju(s,df/) by the

formula

Íu(s, dp.) = 2 u(ji, KAi))>

where s= 2 iyfA with y^Yand L4J a finite family of disjoint sets from V.

One can prove that J u(s, dp) is well defined and that the operator J u(-, •) is

bilinear and continuous from the space S(V, Y)xKau(v, Z) into the space

W and satisfies the relationship

Ju(s, dp)

If we assume that the Young's function p satisfies the A2-condition then

from Th. 8 we may extend the operator J u(-, •) onto the space Lv(v, Y) X

Kqu(v, Z). The extended operator is bilinear continuous on this space and
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satisfies the relationship

Í«(/, dp) îor fELp(v,Y), [i EKq,Jy,Z).

3. Products of vector-valued set functions. For the volume spaces

(Xi,Vi,v,) (i=l, •••,«) define the triple (X,V,v) as follows: X=

Xx x • • • x Xn, Fis the family of all sets of the form A ! x • • • x An where

AfEVf, and v(A)=v1(A1) ■ ■ ■ vn(An) for AeV. It is clear that (X, V, v) is a

volume space.

Let the volume space (X, V, v) be the product of the volume spaces

(Xi, Vi,vt)(i=\,2).

Theorem 2. Let pEKq(v,Z) and AeV1 with i;1(/l)>0. If we define the

functions fiA, vA by the formulae

ptA(B) = p(A x B),   vA(B) = v(A x B)      for all B e V2

then (i) vA is a volume on the prering V2, (ii) the spaces Kq(vA,Z) and

Kq(v2, Z) are equal, and (iii) [iaeKq(v2, Z).

Proof. Let AeVx. It is clear that vA is a volume on the prering V2.

Put c=i\(A) and assume c>0. That the sets Kq(vA, Z) and Kq(v2, Z) are

equal will follow from Proposition 1 once we have shown that the sets

A"(vA, Z) and Aq(v2, Z) are equal.

Let J5" be a finite family of disjoint sets from the prering V2. Let ¡ie

A"(v2, Z), and let A;>0 be such that Iq(fi¡k)v%^\. Then we have the follow-

ing relations:

2 {q[c \fi(B)\lkvA(B)]vA(B)lc:B e^}

= 2{q[\fi(B)\lkv2(B)]v2(B):BE^} ^ 1.

If c>l then since cq(x)^q(cx) for all x_0 we have

2{q[\l*(B)\lkvA(B)]vA(B):BE&} < 1.
If c=l then

2 {q[\fi(B)\l(klc)vA(B)]vA(B):BE^} = c = 1.

Thus if e=min(c, 1) then eNq(/j)v ^Nq(fi)Vi and ¡jleAq(va, Z). Similarly

one can show that Aq(vA, Z) is a subset of Aq(v2, Z) and that if/=max(c, 1)

then NQ(p)V2^fNq(p)VA. To show that p,AEKQ(v2, Z) we need only prove

that pAEAQ(vA, Z), which follows from definitions, Proposition 1 and (ii)

above.

Theorem 3. Let pEKq u(v,Z) and AeVx. If the functions ¡xA, vA are

defined as in Theorem 2 then ptA^Kq,u(v2, Z) and \\pA\\q „<(1 +v1(A))\\/u\\q¡u

for all AeVi.
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Proof. It is clear that the function pA is finitely additive on the prering

V2 and that pA(B)=0 when v2(B)=0. Let s=JiiyicA. be such that

llJllp.t>2=l- Then since s-cA is a simple function S'cAeLP(v, Y). From

Young's inequality we have \\s-cA\\v,v^l+$p°\s-cA\dv, and from

Theorem 3 of Bogdanowicz [3] we have the relation $p°\s-cA\ dv =

Vy(A)$p°\s\ dv2. From Th. 4 we have the estimate jp°\s\ dv2^l, so that

lls'c^llj).»;=a» where a=l+Vy(A). Thus we have

2 u(yja, Pa(A2í) ^ IN,..

so that \\fiA\\Q,u^a\\p\\a_u and pAeKQJv2, Z).

We remark that Theorem 2 could also be proved in a manner analogous

to the proof of Theorem 3, the proof of which would yield an inequality

similar to that of Theorem 3.

Let Z, (/= 1, • • ■ , «), IF be Banach spaces and let u be an «-linear

continuous operator from the product of the spaces Z1; • • • , Zn into the

space W. Let B(ZX, • ■ ■ ,Zn; W) denote the space of all such operators u.

Denote the norms in the above spaces by |-|. Let (X, V, v) be the product

volume space formed from the volume spaces (X{, V(, v¡) (l=l, ■••,«).

Theorem 4. Assume that the Young's function q satisfies the A'-

condition. If piGKQ(i\, Z¡)for i=\, • • • , n then peKQ(v, W), where

p(Ax x ■■■ x An) = u(px(Ax), ■■• , pn(An))  for A e V

Proof. The proof is given in [9] for Orlicz spaces of finitely additive

set functions generated from a charge space. The proof there is applicable

here.

4. A Fubini theorem for the Orlicz space Lv(v, Y). Let (X, V, v) be the

product volume space of the volume spaces (Xit Vt, v¡) for i=\, 2. Let

Y,Zy,Z2, W be Banach spaces. Assume that weB(Y,Zx,Z2; W) and

define the operator wx by w\(y, z2) = w(y, -, z2) for yeY, z2eZ2. It is clear

that w\eB(Y,Z2;Yy), where YX=B(ZX;W). Define w0(yy, Zy)=yy(zy)

for yxeYy, zxeZy and notice that w0eB(Yy,Zy; W) and 1^1 = 1^1 and

Kl=i.
Let N(vy, Yy) denote the subset of those functions from the space

Lv(vx, Yx) whose seminorms are zero. The space N(vx, Yy) is a linear

space and the quotient space LV(VX, Yx)jN(vx, Yx) is a Banach space with

norm \\-\\PàVl defined by the formula

lli/]IU=H/IU   for all/eL,^, 7A.
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Let us assume that the Young's functions p, q satisfy respectively the

A2-condition and the A'-condition, with k the associated A'-constant.

Theorem 5. Let fELp(v, Y) and p2EKQ(v2, Z2). Then the following

statements are true:

(i) There exists a i\-null set D such that f(x1, ^eL^v^ Y) ifx^D.

(ii) If the function t is defined by the formula i(*i)=ll/(*i> OH».», 'fxi$D
and 0 otherwise then tELp(i\, R) and t satisfies the inequality \\t\\pv _

j>|/| dv+k.

(iii) The operator f=r(f, p2) defined by the formula

f(xi) =   Wi(/(*i, xj, ph(dx¿)

if x$D is bilinear from  the space Lv(v, Y)xKq(v2,Z2) into the space

Lv(i\, YJ/Nfa, Fj) and satisfies the inequality \\f\\P,Vl^ \\p2\\q\\t \\P,Vl\w\.

(iv) J w(f, d(ix, d(i2) = l w0(r(f, fi2), dpx) for allfELv(v, Y), ̂ ¿eA^r,, Zt)
for i= 1, 2.

Proof. Let fEL„(v, Y). By Th. 1 and Tonelli's theorem there is at»r

null set Dj such that/(x,, -)eM(v2, Y) if x^D^ By the corollary to Th. 4

and by Theorem 3 of [3] there is a t^-null set D2 such that pa\f(x1, -)\e

L(v2, R) if x^D2. Put D = D1 \JD2 and notice that D is a r-null set. Let

seS(V2, R) be such that ||i||,,^^ 1 and assume that x^D. Then we get the

estimate

\f(xu x2)\ s(x2)v2(dx2) =   p(\f(xu x2)\)v2(dx2) + 1,

so that

¡fix» ) |,.„ = JW(xl5 x2)\)v2(dx2) + 1.

It follows from Th. 1 that/t*,, -)eLp(v2, Y) if x^D.

For the operator/, as defined in the theorem statement, put/(xj) =

OeFi if xxeD. We shall first show that the function feM(i\, F,).

Define the function ¿>m by the formula

bm(y) = y if \y\ Ú ™,

= (m/|j»|)i»       if \y\ > m,

for all yE Y and for »x= 1, 2, • • •.

Since/eM(r, Y) there is a sequence of functions rnES( V, Y) and a r-null

set A such that r„(x)—>/(x) if x$A. Let C be the t>null set such that the

section A(xl) = {x2:(xl, x2)eA} is a r2-null set if xx$C. Let the set An be

the support of the function rn and put B„=A1 U- • • U^„, for «=1,2, • • •.
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If for an appropriate strictly increasing sequence of positive integers m(n)

we define the function sn by the formula sn(x)=cBn(x)bn(rmln)(x)) for all

xeX, for «=1, 2, • • • , then we get ||/(x1; •)—i«(*i,0H„.«,-^ ¡f x^DkjC.

Define the function sn by the formula sn(xx)=J wx(sn(xx, x2), p2(dx2)) for

all xxeXx, for «=1, 2, • • • . We have the estimate

\Sn(Xy)-f(Xy)\  ^  \\sn(xx, -)-f(Xy, -)\\PtVi \\p2\\Q \W\

if Xy^DKJC. Thus sn—>-fVy-a.e., and since sneS(Vy, Yy) it follows from

Theorem 1 of [2] thatfeM(vy, Yy).

Let seQ(v2, R+) and s0eQ(vx, R+). From Young's inequality and the

fact that q satisfies the A'-condition we get the following inequality:

\f(xy, x2)\ s(x2)v2(dx2)s0(xx) <;   p(\f(Xy, x2)\)v2(dx2) + kq(s0(xx)) vx-a.e.

If we define the function t on Xx by t(xx)=\\f(xx, OH».», if xx$D, and

0 otherwise then we get the estimates

\f(Xy)\S0(Xy)   ̂    t(Xy)   \\p2\\Q  M  S0(Xy)

and

t(Xy)S0(Xy)    ̂    [p(\f(Xy,   X^V^dX,)    +   /tfl^O^)) iva.e.

If we temporarily assume that the function t is immeasurable then by

integrating the last two inequalities and by taking the appropriate suprema

we have the following two inequalities:

H/IL«, ;= ll'II^IKLM,      ll'll,.., ==J/> ■> l/l dv + k.

Thus feLp(vx, Yx)/N(vx, Yx). The bilinearity of the operator r is evident.

We next show that the function / is locally v^summable and that t has

a (Vx)a support. The latter is true because feLB(v, Y). Fix BeVy for

the remainder of this discussion and choose seQ(v2, R+). Notice that

\f(xy,-)\s(-)eL(v2,R)ifxx^D.lfv/eputgs(xx)=cB(xy)j\f(xy,x2)\s(x2)v2(dx2)

if Xy$D and 0 otherwise then from Theorem 3 of [3] we have that gse

L(vy, R). Define the function « by the formula

h(xx) = cB(xx) jpo1 + \p° l/(*l, x2)l v2(dx2)

if Xy$D and 0 otherwise, where p°\f(xx, -)l is i>2-summable by Th. 4.

From Theorem 3 of [3] we have that heL(vy, R). From Young's inequality

we have g,(xx)^h(xx) for all xx. Let G={gs:seQ(v2, R+)} then G is a

bounded set from L(vx, R). Since L(vx, R) is order complete with respect to

pointwise domination we have that the function tcB=sun{gs:s£Q(v2, R+)}

is jvsummable.
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Part (iv) of the theorem can easily be shown true for simple functions.

That it is true for functions from Lv(v, Y) follows from the density of

simple functions in Lv(v, Y) (Th. 8) and from the boundedness and co-

ordinate-wise linearity of the integral.

Remark. The statement derived from Theorem 5, excluding part (iv),

by replacing the space Kq(v2, Z2) by the space Kqw(v2, Z2) and by replacing

the value HyuJjM'l by the value ll/^lla.«, istrue- The proof is similar to that

of Theorem 5.
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