ON TWO PROBLEMS OF HARRIS CONCERNING RC-PROXIMITIES

P. L. SHARMA AND S. A. NAIMPALLY

Abstract. We give an example that settles the first and third problems posed recently by Douglas Harris [1]. The example shows that comparable RC-proximities on an RC-regular space need not give rise to comparable regular-closed embeddings, and that an RC-regular space need not have a largest regular-closed embedding.

Consider the minimal regular but not completely regular space \(Z \) constructed in [2]. Let \(T \) be the dense discrete subspace of \(Z \) consisting of points none of the coordinates of which are infinite limit ordinals. Let \(\delta \) be the discrete proximity on \(T \) and let \(\delta' \) be the RC-proximity on \(T \) induced by the unique RC-proximity on \(Z \). Then \(\delta > \delta' \) and the ideal spaces corresponding to \(\delta \), \(\delta' \) are \(\beta T \) and \(Z \) respectively. Since \(Z \) is not compact, there is no continuous function from \(\beta T \) onto \(Z \) and hence \(\beta T \) is not larger than \(Z \). It is now also clear that \(T \) has no largest regular-closed embedding.

References

Department of Mathematics, Indian Institute of Technology, Kanpur 16, U.P., India

Current address (Naimpally): Lakehead University, Thunder Bay, Ontario, Canada

Received by the editors March 31, 1971.

AMS 1970 subject classifications. Primary 54D25, 54E05; Secondary 54D10.

Key words and phrases. RC-proximities, regular-closed embeddings, minimal regular.

© American Mathematical Society 1972

312