SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

THE TANGENT MICROBUNDLE OF A SUITABLE MANIFOLD

RONALD J. STERN

Abstract. The purpose of this note is to generalize to the topological category the fact that a suitable differentiable manifold is parallelizable (Theorem 4 of [1]). This result has a "folk-theorem" status in some quarters, but I believe that in view of the recent interest in H-manifolds [2], it would be desirable to have the result on record.

Let M be an n-manifold. Define $\Delta: M \rightarrow M \times M$ to be the diagonal map, and $\pi^1, \pi^2: M \times M \rightarrow M$ to be the projections on the first and second factor respectively. Milnor [3] calls the diagram $\Delta: M \rightarrow M \times M: \pi^1$ the tangent microbundle of M, where for each point $b \in M$ there exists an open set U_b in M containing b, an open set V_b in $M \times M$ containing $\Delta(b)$, and a homeomorphism $h: V_b \rightarrow U_b \times \mathbb{R}^n$ such that the following diagram commutes:

Received by the editors May 18, 1971.

AMS 1970 subject classifications. Primary 57A55.

Key words and phrases. Tangent microbundle, topological parallelizability, suitable manifolds, H-spaces.

1 Work done while author was on an NSF Traineeship at the University of California, Los Angeles.

© American Mathematical Society 1972

324
An n-manifold M is **topologically parallelizable** if there exists an open set V_1 in $M \times M$ containing $\Delta(M)$, an open set V_2 in $M \times \mathbb{R}^n$ containing $M \times \{0\}$, and a homeomorphism $h: V_1 \to V_2$ so that the following diagram commutes:

(1)

$$\begin{array}{ccc}
M & \xrightarrow{h} & M \\
\Delta & \xrightarrow{\pi^1} & M \\
\text{id} \times 0 & \xrightarrow{\text{proj}} & V_2
\end{array}$$

Pick $e \in M$. M is **suitable** if there is a continuous map $\Phi: M \to G(M)$ such that $\Phi(x)(x) = e$ and $\Phi(e) = \text{identity}$, where $G(M)$ is the group of all homeomorphisms of M onto itself with the compact-open topology. By Theorem 2 of [1], M is suitable iff there exists a $\theta \in G(M \times M)$ such that

$$\theta(M \times (M - e)) = \{(x, y) \in M \times M : x \neq y\} \quad \text{and} \quad \pi^1 \theta = \pi^1.$$

Note that a suitable manifold supports an H-space structure [1].

Theorem. A suitable n-manifold M is topologically parallelizable.

Proof. Let U_b and V_b be as in the definition of the tangent microbundle of M. Let W be an open set in M such that $e \in W \subset \text{cl } W \subset U_b$. Choose the V_b's so that $\pi^2 \theta^{-1}(x, y) \in W$ for $(x, y) \in V_b$. Let $k: U_r \to \mathbb{R}^n$ be a co-ordinate map such that $k(e) = 0$. Define $\lambda: M \to [0, 1]$ so that λ is 1 on a neighborhood of $\text{cl } W$ and 0 on a neighborhood of $M - U_r$.

Let $V = \bigcup_{b \in M} V_b$ and define $h: V \to M \times \mathbb{R}^n$ by

$$h(x, y) = (x, \lambda(\pi^2 \theta^{-1}(x, y))k(\pi^2 \theta^{-1}(x, y))).$$

h is a local homeomorphism, i.e. for $b \in M$, $h: V_b \to \text{image } h|_{V_b}$ is a homeomorphism, for define h': image $h|_{V_b} \to V_b$ by

$$h'(x, r) = (x, \pi^2 \theta(x, k^{-1}(r))).$$

Then on V_b, $\pi^2 \theta^{-1}(x, y) \in W$ so $h'h = \text{id}$, and on image $h|_{V_b}$, $k^{-1}(r) \in W$ so $hh' = \text{id}$.

However, $h: \Delta(M) \to M \times \{0\}$ homeomorphically, so by Lemma 4.1 of [4], there is a neighborhood V_1 in $M \times M$ of $\Delta(M)$ and a neighborhood V_2 in $M \times \mathbb{R}^n$ of $M \times \{0\}$ such that $h: V_1 \to V_2$ is a homeomorphism. As h commutes in (1) this proves our result.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024