ON INTEGRABLE AND BOUNDED AUTOMORPHIC FORMS. II

T. A. METZGER AND K. V. RAJESWARA RAO

Abstract. For a finitely generated Fuchsian group, every integrable automorphic form of arbitrary real dimension <-2 is bounded. If the group is, in addition, of second kind, then every integrable automorphic form of dimension -2, with arbitrary factors of automorphy, is zero.

1. Introduction. Throughout, Γ denotes a Fuchsian group acting on the unit disc U of the complex plane. For any given real number q, we choose and fix, once and for all, a system $\rho(q, T, z)$ ($z \in U, T \in \Gamma$) of factors of automorphy of dimension $-2q$ belonging to Γ (cf. [3]). Note that, if q is an integer, $\rho(q, T, z) = \chi(T)T'(z)^q$, where χ is a character of Γ.

Let Ω be a Poincaré normal polygon of Γ centered at a point in U not fixed by Γ. Denote by $A_q(\Gamma)$ the space of integrable, holomorphic automorphic forms of dimension $-2q$, and, by $B_q(\Gamma)$, the space of bounded, holomorphic automorphic forms of dimension $-2q$ (cf. [3]). We prove:

Theorem 1. Let Γ be finitely generated. Then $A_q(\Gamma) \subset B_q(\Gamma)$ for $q > 1$.

Theorem 2. Let Γ be finitely generated and be of second kind. Then $A_1(\Gamma) = \{0\}$.

Remarks. In the case where q is an integer and $\rho(q, T, z)$ are the standard factors of automorphy $T'(z)^q$, Theorem 1 was proved by Drasin and Earle [1] by an entirely different method. For arbitrary real q and arbitrary ρ, Theorem 1 was established in [3] under the additional hypothesis that Γ contains no parabolic elements. Theorem 2 is proved here by reducing it to the already established (cf. [3]) special case of standard factors of automorphy $\rho(1, T, z) = T'(z)$. Thus, the present note is in the nature of an addendum to [3].
2. Proof of Theorem 1. For $q>1$ and z, ζ in U, let

$$K(z, \zeta) = \pi^{-1}(2q - 1)(1 - |z\zeta|)^{-2q},$$

where K is analytic in z and $K(0, \zeta)>0$. By Theorem 1 of [3], it suffices to show that

$$(2.1) \sup_{z \in U} (1 - |z|^{2q})\alpha(z, z) < \infty,$$

where

$$\alpha(z, \zeta) \equiv \sum_{T \in \Gamma} \rho(q, T, z)K(Tz, \zeta).$$

Let H^∞ be the Banach space of bounded analytic functions on U with the supremum norm and E be the Banach space of all holomorphic automorphic forms F of dimension $-2q$ such that the norm

$$\|F\| = \sup_{z \in U} |F(z)| < \infty.$$

For f in H^∞, consider the Poincaré series

$$\theta f(z) = \sum_{T \in \Gamma} \rho(q, T, z)f(Tz).$$

Knopp [2, Proposition 3] proved that, if $f \in H^\infty$, then $\theta f \in E$. Standard arguments show that convergence of a sequence in norm in either of the spaces H^∞ and E implies uniform convergence on compact subsets of U. This readily implies that the map $f \mapsto \theta f$ is a closed linear map of H^∞ into E. The closed graph theorem then implies that $\theta : H^\infty \rightarrow E$ is a bounded linear map, i.e., there exists a constant $M < \infty$ such that, for all f in H^∞,

$$|\theta f(z)| \leq M \sup_{t \in U} |f(t)|, \quad z \in \Omega.$$

Applying this to $f(t) = K(t, \zeta)$, we conclude that

$$|\alpha(z, \zeta)| \leq M \pi^{-1}(2q - 1) \frac{2^{2q}}{(1 - |z\zeta|)^2q}, \quad z \in \Omega, \zeta \in \Omega.$$

Setting $\zeta = z$, we obtain the existence of a constant $N < \infty$ such that

$$\beta(z) \equiv \alpha(z, z)(1 - |z|^2)^{2q} \leq N, \quad z \in \Omega.$$

Since, for all T in Γ, $\beta \circ T = \beta$ and Ω is a fundamental region for Γ, (2.1) follows and the theorem is proved.

3. An auxiliary result. The proof of Theorem 2 is based on the following result of independent interest.
Theorem 3. Let Γ be finitely generated and be of second kind. For any character λ of Γ, there exists a function g bounded and analytic on U, not identically zero on U and satisfying

\begin{equation}
\lambda(T) \cdot (g \circ T) = g, \quad T \in \Gamma.
\end{equation}

Proof. If the theorem is true for Γ, then it is true for every conjugate of Γ (in the full group of conformal selfmaps of U). Hence we can and do assume that the origin in U is not fixed by Γ and let Ω be the normal polygon centered at the origin.

Let f be a holomorphic automorphic form of dimension -2 belonging to Γ with factors of automorphy $\lambda(T) \cdot T'(z)$:

\begin{equation}
\lambda(T) \cdot T' \cdot (f \circ T) = f, \quad T \in \Gamma.
\end{equation}

Let g be the antiderivative of f satisfying $g(0)=0$. (3.2) implies, for each T in Γ, the existence of a constant $C(T,f)$ such that

\begin{equation}
\lambda(T) \cdot (g \circ T) = g + C(T,f), \quad T \in \Gamma.
\end{equation}

It is readily verified that, for all T_1, T_2 in Γ,

\begin{equation}
C(T_1T_2,f) = \lambda(T_2) \cdot C(T_1,f) + C(T_2,f).
\end{equation}

It follows that the set $\{T \in \Gamma | C(T,f)=0\}$ is a subgroup of Γ. Since Γ is finitely generated, the theorem will be proved if there exists a nontrivial f such that the corresponding g is bounded on U and is such that

\begin{equation}
C(S_j,f) = 0, \quad j = 1, 2, \ldots, m,
\end{equation}

where $\{S_1, \ldots, S_m\}$ is a generating set for Γ. We choose $f(z)=\theta p(z)=\sum_{T \in \Gamma} \lambda(T) T'(z) p(Tz)$ for a suitable polynomial $p=\sum_{i=0}^{n} a_i p_i$, where $p_i(z)=z^i$ and $n \geq m$. Let $f_1=\theta p$. Since θ is a linear map and $h \rightarrow C(T,h)$ is linear, the condition (3.3) is equivalent to: $\sum_{i=0}^{n} a_i C(S_j,f_i)=0$, $j=1, 2, \ldots, m$. These are m linear equations in $n+1>m$ unknowns a_i and hence they have a nontrivial solution (a_0, \ldots, a_n). The corresponding f satisfies (3.3). Also, remembering that Γ is of the second kind and examining the behaviour of f at the point at infinity (cf. [4, Proposition 3]), one sees that f is not identically zero on U. Hence the corresponding $g \neq 0$ on U and satisfies (3.1). Since p is bounded on U, Proposition 3 of Knopp [2] shows that $f=\theta p$ is bounded on $\Omega: \sup_{z \in \Omega} |f(z)| \leq M < \infty$. Hence, for z in Ω,

$$
|g(z)| = \left| \int_0^\infty f(t) \, dt \right| \leq M |z| \leq M;
$$

here, we have integrated along the radial segment and this is justified.
since \(\Omega \) is non-Euclidean convex and the radial segment is the non-Euclidean line segment. Thus \(g \) is bounded on \(\Omega \). Since \(\Omega \) is a fundamental region for \(\Gamma \) and \(|\lambda|=1 \), (3.1) now implies that \(g \) is bounded on \(U \) thus completing the proof.

4. **Proof of Theorem 2.** Let \(F \in A_1(\Gamma) \) and the factors of automorphy be \(\rho(1, z, T) = \chi(T) T'(z) \), where \(\chi \) is a character of \(\Gamma \). Thus \(\chi(T) T'(z) \cdot (F \circ T) = F \) and \(\int_{\Omega} |F(z)| \, dx \, dy/(1-|z|^2) < \infty \). Choose \(g \) as in Theorem 3 above with \(\lambda = \chi \) and let \(G = g \cdot F \). Then \(T'(G \circ T) = G \) for all \(T \) in \(\Gamma \) and thus \(G \) is a holomorphic automorphic form of dimension \(-2\) with the standard factors of automorphy \(T'(z) \). Moreover \(G \) is an integrable form:

\[
\int_{\Omega} \int |G(z)| \cdot \frac{dx \, dy}{1-|z|^2} \leq \sup_{z \in U} |g(z)| \int_{\Omega} \int \frac{|F(z)|}{1-|z|^2} \, dx \, dy < \infty.
\]

Hence, by Theorem 3 of [3], \(G \) is identically zero on \(U \). Since \(g \) is not identically zero, it follows that \(F \) is identically zero on \(U \), thus establishing the theorem.

References

Department of Mathematics, Purdue University, Lafayette, Indiana 47907

Current address (Metzger): Department of Mathematics, Texas A & M University, College Station, Texas 77843