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THE  CONVERGENCE OF RATIONAL FUNCTIONS

OF BEST APPROXIMATION TO THE
EXPONENTIAL FUNCTION. U

E.   B.   SAFF1

Abstract. Let Wm,n(z) be a rational function of type (m, ri) of

best uniform approximation to the function ez on the closed unit

disk. In this paper we show that any sequence {Wm,n(z)} for which

m+n—^oo must converge to e' for all values of z. This is the first

result which describes completely the regions of convergence of

arbitrary sequences formed from a Walsh array.

1. Introduction.   A rational function rmn(z) is said to be of type (m, n)

if it is of the form

rm,n(z) = f»(%»W.       qn(z) & 0,

where pm(z) is a polynomial of degree at most m and qn(z) is a polynomial

of degree at most n. For each pair (m, n) let Wm¡n(z) denote a rational

function of type (m, ri) of best uniform approximation to the function

e2 on the disk |z|^l. By "best uniform approximation" we mean that

the inequality

max \ez - Wm¡n(z)\ < max \ez - rm¡n(z)\
l»|Si |*|Sl

holds for every rational function rm¡n(z) of type (m, ri). The Wm¡n(z)

form a doubly-infinite array

W0,0(z)    Wy_0(z)    W2^(z)   ■■■

m                                                                  W0ml(z)         Wy_y(z)         W2,y(z)        '■■

W,.2(Z) WX_2(Z) .

known as the L^ Walsh array [6] for ez on |z|^l.
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The regions of convergence of the rows and columns of Walsh arrays

for meromorphic functions have been investigated in [3] and [7]. However,

no result is to be found in the literature which concerns the regions of

convergence of other sequences of rational functions which may be

formed from an array, such as the diagonals. The aim of the present

paper is to establish such a convergence theorem for the array (1).

Main Theorem. Let Wmn(z) be any sequence of rational functions

from the array (1) such that w+«—>-co. Then for all values of z we have

(2) lim   Wm,n(z) = ez,
m+n-*oo

and the limit is uniform on each bounded subset of the plane.

In [4] the author proved (2) for the special cases where m or n is fixed,

i.e., for the columns and rows of (1). The proofs of the special cases and

of the general result depend upon a comparison of (1) with the Padé

table [2] for ez. The Padé approximant of type (m, n) for the function e"

is the unique rational function Rmn(z) of type (m, n) with the property

that ez—Rmn(z) has a zero of order m+n+l at z=0. We shall write

Rm.niz) = Pm.niz)IQm.niz),

where Pm¡n(z) and Qm_n(z) are polynomials of respective degrees m and n,

and ßm.„(0)=l. We call Pm¡n(z) a Padé numerator and Qm¡n(z) a Padé

denominator for the function ez.

2. Lemmata. In this section we mention some results that will be used

to prove (2).

Lemma 1. Let t>0 and Rm n(z) a sequence of Padé approximants for

ez such that m+n—>-co. Then for m-\-n sufficiently large we have

(3) \ez - Rm,n(z)\ ^ ATTm+n+1m\ n!/(m + n)\ (m + n + 1)!,

\Z\<T.

Furthermore, the Padé denominators Qm¡n(z)for ez satisfy, for all z,

(4) |ßM.„(z) - e-nzl{m+n)\ ^ |z|2 e|2|/2(m + n),       m + n > 0.

Here and below constants A with subscripts are independent of m and n.

Proof. Inequality (4) is proved in [2, §75] and implies that for m+n

sufficiently large the Qm,n(z) are in modulus uniformly bounded below

by a positive constant for |z|^t. From the known identity [2, p. 436]

/_1 \n„m+n+l /*1

**Ô„.„(Z) - Pm.niz) = -1-TT       ̂ "t1   - t)m dt'
(m + n)\   Jo
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we obtain

k*ßm.„(z) - Pm,n(z)\ = eWm+n+1ml nt/(m + «)! (m + „ + 1)!,

1-1   = T,
and (3) follows.

The next lemma appears in [5].

Lemma 2.   Let Cn_1 denote the set of all ordered (n-l)-tuples Z-

(zy, z2, • • ■ , zn_y) of complex numbers and for k = \, 2, • ■ • , n let

n-l

Lk(Z) = bk + 2 bkiZi.
¿=i

Let B denote the determinant of the matrix

by        byy        fe12        '   '   • byn_y

b2    b21    b22   • ■ ■    b2 n.

(5)

—bn   bny   bn2   ■ ■ •    £>„_„_!_

and for l^pSn let B{fl) be the determinant of the matrix obtained by

deleting the pth row and 1st column from the matrix (5). IfB{ß)VO for some

p, then

j;=i

Lemma 3.   Let

2\Lk(Z)\^min {|fi|/|Bw|},       ZeC"1.

(6)

Mm.n = det

1/m!

l/(m + 1)!

l/(m - 1)!

1/m!

Ll/(m + n - 1)!    l/(m + n - 2)!

l/(m - « + 1)!"

l/(m- n + 2)!

1/m!

m£ 1,    n^2

// A/™'" denotes the determinant of the matrix obtained by deleting the

pth row and vth column from the matrix in (6), then

(7) 0 < M™;" ̂ M£iB,       1 = A = »,   1 = » Ú «■

For m-k<0, we put l/(m-A;)!=0 in (6).
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Proof.   The following identities are derived in  [4] for m^.n, but

remain valid without this restriction:

M" = n
(8)

MZT
1

n

in - Q!

tî (m - 1 + ¿)!

in - 01
Jvil.v    — Jwn-v+l,l-

(p — 1)! i=r,i*n (m — 2 + ¡")!

The equations (8) imply

(9) MTf ^ M^i,

and so (7) holds for p = \. For p>\ we prove (7) by induction on v.

By a well-known result of the theory of determinants  [1, p. 33,

Corollary 3]

(10)      M£-„B = M"i"

'My     Mm'nM™_ixn-^

LM£i"        M1mi"M™i" J

Thus for r=2 we obtain, from (10) and the identities (8),

[(n — l)(m + p — 2) + p — 1

j« > 1,    j»> 1.

M™2" = M£i"
L   (m + n - l)(m + p - 2)

^ M™f,       0 > 1.

Now assume that (7) holds for v=k(>\) so that M^^M™^1. Since

(9) implies that M^;k\x^Mx;2n, we deduce, from (10),

n.k+1 = JVJ/i,2    = iVVl )

i.e., (7) holds for v=k+l. This proves Lemma 3.

We shall use Lemmas 2 and 3 to establish

Lemma 4.    Let p>0, m^\, n^.2, 05&^n—1, and zt¡ = \. Then for

any n—\ complex numbers z¿, 0^z:_n—1, ij^ia, we have

(H)
2

k=l

ZziKm + k- 1 -¿)!
¿=o

= Ap"
(m- !)!(«- 1)!

(m + « - 2)!(m + n - 1)!

where A=infoS3<co{;'!/p3'}>0.

Proof. Lemma 2 implies that the left-hand member of (11) is bounded

from below by min1^sJ/A/m'7M™£+1}, and hence, from (7), by

min1^^n{P"Mm-nlM^n. Sinceáiignir  "-"        /-1" ß.

pfMZf     (n - p)\ (p - l)!(m + n - 2)!     in - /*)!
pnMm.n pn-"(n - l)!(m +.M-2)! M-/1

§:*,
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we have

(m - l)!(n - 1)!p"Mm'"/M,T  > XpnMm.njM::n = ^n

(m + n — 2)1 (m + n — 1)1
and (11) follows.

The final lemma is due to J. L. Walsh [8, p. 231].

Lemma 5.    If r(z) is a rational function of type (m, m) whose poles lie

exterior to the circle \z\=R (>1), and if\r(z)\^L,for |z|<l, then

Mff7)"\r(z)\ <: L[Y^) '   for |z| = T'    ! < T < R-

3. Proof of Main Theorem. We first show that as m+n-^cc the poles

of the rVm¡n(z) approach infinity. Suppose to the contrary that there

exists a number p>l and a subsequence of the vVmn(z), which we con-

tinue to denote by Wmn(z), with the property that each Wmn(z) has a

pole l/amn (km,J<l) that lies in the disk |z|_=p/2. We assume, as we

may, that m^l. Now write

WmAZ) = Pm.»(Z)/(l - am,rez)<7m,n(zX

where pm-n(z) is a polynomial of degree at most m, and qm¡n(z) is a

polynomial of the form

¿=o

which is normalized so that |cf,n|:gi, 0^/^«—1, and cJ",B=l for some

i0=i0(m,n). By the extremal property of the Wmn(z) we have, from

Lemma 1,

(12) \e* - WmJz)\ ^ Aysm¡n,       \z\ ^ 1,

where em n = m\n\l(m-\-ri)l(m+n+\)\. Thus by the triangle inequality

(13) \RmJz)-WmJz)\^2Axem,n,        |z|^l.

Since (4) implies that the Padé denominators Qm,n(z) are uniformly

bounded for |z|^l, we have

lß«.»(z)(l - <*m.»%n.»00l = A*n,       |z| = 1,

and so from (13) there follows

1(1  - <*-m.nZ)<lmÀZ)PmAZ) ~ Qm.n(z)Pm.n(z)\ = A3mm,n, \z\ ^ 1.

Note that the function whose absolute value appears in the last inequality

is a polynomial of degree at most m+n and hence from a lemma of
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Bernstein [8, p. 77] we deduce that

|(1 - am,nz)qmJz)PmJz) - Qm,n(z)pmJz)\ <: A3pm+r,nem,n,        \z\ ^ p.

But for m+n sufficiently large lom,n(z)|^<r>0 for |z|^p, and so

(14) |(1 - am,nz)qmJz)RmJz) - pmJz)\ ^ AiPm+nnem,n,        \z\ ;S p.

Since (14) holds for z—\\a.mn, it follows that

1(1  - °*-m.nZ)qm.niZ)Rm.niz) ~ Pm.ni*) + Pm.„(l/«m.„)l Ú ^iPm+"nSm^,

|Z| = P,
and consequently

(15) max |íBi,(z)RBíII(z) - nmJz)\ ^ Ahpm+nmm¡n,

\z\áp

where  wm,„(z) = (/»mi„(z)-/»miM(l/a,„,„))/(l-am,Kz)  is  a  polynomial  of

degree at most m—\.

We now obtain a lower bound for the left-hand member of (15). Let

;=o

Since the (m— l)th section of the Taylor development

oo   /»— 1 \

am,n(z)RM(z) = 22 cT-nd^l\z¡,       dtS = 0   for   ; - i < 0,
3=0 \!=0 /

is the polynomial of degree at most m—\ of least squares approximation

to the function qm,n(z)R„un(z) on \z\ = p, we have the inequalities

max \qm,n(z)RmJz) - irm¡n(z)\
\_\z\io

(16)

^ (27TP)-1 f      \qm,n(z)RmJz) - 77m,K(z)|2 \dz\
J\z\=p

J\z\=p    j=m \i—0 /

m+n—1

> y

n-l
2rm.njm,n

Li      uj—i

¿=0

„«

"m+n—1

2
.   J=m

»i-l

ci      " i—i

the last inequality follows from the Cauchy-Schwarz inequality. By the
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definition of the Rm¡n(z),

cí"'n=l/y!,    for   0^j<m + «.

Hence (16) implies that

max \qm.n(z)Rm,n(z) - trm,n(z)\

M=>

jm— 1 n

= — 2
y/n k=l

2cT-nl(m + k-l-i)l
¡=o

P >

and so from Lemma 4 we obtain

(17) max \qm,n(z)RmJz) - 7tmJz)\ ^ — p^^e^y^y.
Map y/n

But then by (15) and (17),

À   nm+nnp        > —— nm+n~1F
^¡P nem.n =      ,     P £m-l.n-l,

which contradicts the fact that n3/2em¡Jem_y,„_1->0 as m+n-*oo. Thus

the Wm_n(z) have no finite limit point of poles.

We can now prove (2). Let 1<t<í? and choose m+n so large that

the poles of Wm_n(z) and of Rmn(z) lie exterior to the circle \z\=R. Since

Rm.ni^—^m.Â2) ¡s a rational function of type (2(w+n), 2(m+«)) it

follows from (13) and Lemma 5 that

R^Í) '        |Z| - T-

Thus from (3) and the triangle inequality we obtain

(n     _  |\2(m+n)

R — T I

As m+«—>-oo the right-hand member of (18) approaches zero and so (2)

holds for |z|^t. Since r (>1) is arbitrary, the proof of the Main Theorem

is complete.

We conclude with two remarks. Firstly, by applying the method used

to obtain (17) it can be shown that

max \e* - WmJz)\ ^ emJ(n + if2.
I*l=i

Secondly, the convergence in (2) holds not only for the extremal rational

functions Wm¡n(z), but for any sequence of rational functions rVmn(z) of

respective types (m, ri) which satisfy (12).
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