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TIME-VARIABLE SINGULARITIES FOR SOLUTIONS

OF THE HEAT  EQUATION

D.   V.   WIDDER

Abstract.   A solution u(x, t) of the two-dimensional  heat

equation uxx=u, may have the representation

foo
u(x, 0 = 1     k(x —y,t)da(y)

where k(x, í) = (47rí)-1'2 exp[—x2/(4r)l, valid in some strip

0</<c of the x, i-plane. If so, u(x„, t) is known to be an analytic

function of the complex variable t in the disc Re(l/f)> 1/c, for each

fixed real x0. It is shown here that if <x(y) is nondecreasing and not

absolutely continuous then u(x0, t) must have a singularity at /=0.

Examples show that both restrictions on a(_y) are necessary for that

conclusion. It is shown further under the same hypothesis on <x(y),

that for each fixed positive t0<c, u(x, t„) is an entire function of x

of order 2 and of type l/(4f0). Compare the function k(x, t) itself

for a check on both conclusions.

1. Introduction.   In a recent note [1969] H. Pollard and I discussed the

representation of a function/(x) by the Gaussian integral

=r k(x
»' — CO

(1.1) /(*)=       k(x - y, a) dxa(y),
»'—00

where aa(j) is a distribution function and k(x, t) is the fundamental

solution of the heat equation,

k(x, t) = (47r0-1/2exp[-x2/(40].

We showed that iff(x) has one such representation for a given constant a,

then there is always a finite maximum value a=b for which (1.1) holds.

In fact, Pollard in an earlier note (unpublished) gave a precise formula

for b in the special case in which the corresponding distribution function

a¡,(y) is not absolutely continuous. It was

1//»=   l.u.b.  limsup(e/n)|/<2,l)(x)|1/n.
—oo <x< oo    n->oo
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The present note evolved from my effort to simplify this formula. I show

that the symbol l.u.b. may be omitted because what follows it is indepen-

dent of x. I prove in fact that/(;c), as defined by (1.1) with a.a(y) a non-

absolutely continuous distribution function, is entire of order 2 and of

type l/(4a). Since order and type are independent of origin we have from

a familiar formula (R. P. Boas [1954, p. 11])

lim sup (1/«) |/(")(x)|2/n = 2/(4flc).
n ->oo

We show that this equation remains true for the present function/(x) when

n is replaced by 2« and thus obtain the desired simplification of Pollard's

formula.

The above conclusion about the order and type of/(x) really comes as a

corollary to the principal theorem of this note, one which seems to have

independent significance in the theory of heat conduction. I prove that if

u(x, t) is a solution of the heat equation

(1.2) d2ujdx2 = dujdt

which has the representation
Ç oo

u(x, t) =       k(x — y, t) dct(y),
J — 00

where a.(y) is a nondecreasing and nonabsolutely continuous function,

then u(x, t), considered as a function of the complex variable /, has a

singularity at ?=0 for every real x. A case in point is k(x, t) itself, for

which a.(y) is a step-function with a single positive jump. The exponential

factor in k(x, t) has an essential singularity at r=0 for every x except x=0,

and even then the other factor has the predicted singularity. For the

validity of the theorem, the hypothesis that a.(y) is not absolutely con-

tinuous is essential. The simplest examples show this. Indeed if a.(y)=y

then u(x, t) is identically equal to unity. In §4 appear further examples to

show this point and another to show that the nondecreasing character of

a.(y) cannot be omitted in the hypothesis either.

2. Time-variable singularities of temperature functions. We now state

our principal result as a theorem.

Theorem 1.   //

(2.1) u(x, t) =      k(x- y, t) d«.(y),       0 < t < c,
J—00

where a(j) is nondecreasing and not absolutely continuous, then for every

real x0 the function u(x0, t) is analytic in the disc Re(l/i)> 1/c of the complex

t-plane and has a singularity at t=0.



1972] TIME-VARIABLE SINGULARITIES FOR THE HEAT EQUATION 211

Since

u(x — x0, 0 =      k(x — y, t) da.(y — x0),
J—oo

it is only necessary to consider the case x0=0 in (2.1). That equation is then

equivalent to

(4tt01/2M(0, i) = Pexp[-y7(40] d[a(y) - a(-y)].
Jo

Since this integral becomes a Laplace transform in the variable 1/(4/)

after j2 is replaced by a new variable of integration, the stated analyticity

of u(0, t) is apparent. The disc in question has its center at the real point

t=c\2 of the complex i-plane and has radius c/2.

To prove that r=0 is a singularity we assume the contrary and seek a

contradiction. That is, we assume

00

(2.2) u(0,t) = lant\       \t\<P.
71=0

I have proved elsewhere (D. V. Widder [1970]) that any such function has

the integral representation

"(0, 0-1"
Jo

(2.3) «(0,0=      k(y,t)<p(y)dy,
Jo

where <p(y) is an even entire function. We sketch the proof, which depends

on the identity

(2.4) (2n)\ tn = 2(n!) f °°/c(v, t)y2n dy,       t > 0.

Combining (2.4) and (2.2) we obtain (2.3) if

van

<PÍy) = 2Zn\an--
n=o (2n)!

The term-by-term integration is justified by use of the relation

lim sup \an\1/n = lip,

assumed in (2.2). This relation also shows that cp(y) is entire.

The two integral representations for w(0, t) and the uniqueness theorem

for Laplace transforms now insure that

(2.5) «0»)-«(-.>») = fV)dr
Jo

for 7=0. Since both sides of this equation clearly represent odd functions

it must also hold for — oo< v< oo. From (2.5) we have for any h>0 and
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any y0 that
J'vo+A

tp(r) dr.
no

Since a(y) is nondecreasing it follows that

J'Vo+h
<p(r) dr,

fvo+h

0 = «(-Jo) - <~yo - ft) = <p(r) dr.
Jvn

Allowing h to approach zero we see that <x(y0+)=x(y0) and a(— y0)=

a(—y0—). Since j0 is arbitrary it is seen that «.(y) is continuous for

— oo<j<oo. Moreover,

n n .'i/o

That is, one of the Dini derivatives is finite at every point. This fact with

the continuity of x(y) guarantees that tx.(y) is absolutely continuous. See,

for example, S. Saks [1937, Theorem 4.6 on p. 271 and Theorem 6.7 on

p. 227]. But this contradicts a hypothesis of the theorem, as desired.

3. Consequences of the main theorem. The previous result has immediate

consequences for functions/(x) which have the integral representation

(1.1).

Theorem 2.   If

f(x) =      k(x - y, c) d<x(y),
J—co

where <x(y) is nondecreasing, bounded and not absolutely continuous, then

for all real x and for \t \<c,

œ (_t\n /*oo

(3.1) 2(-Jrfi2n)(x) = \    k(x-y,c-t)d«(y).
n=0   n I J-oo

The function

(3.2) u(x, t) =      k(x - y, t) dct.(y)
J — OO

satisfies the hypotheses of Theorem 1 for every positive c since the integral

(3.2) clearly converges for all positive t. Hence by that theorem u(x0, t) is

analytic in the complex half-plane Rer>0. Consequently the Taylor

expansion

( a      ™dMxo,c)(-t)n
(3.3) u(x0, c-t) = 2 ——-—

«=o     dtn        n !
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is valid for |r|<c. But since u(x, t) satisfies the heat equation (1.2) we see

that

dn d2n
— u(x0, c) = — u(x0, c) = f(2n)(x0),

and equation (3.3) is equivalent to (3.1).

Corollary 2.1.    Iff(x) is defined as in Theorem 2, then

\f2n)(x)\1/n      1
(3.4) lim sup •oo < x < oo.

ce

For, by Theorem 1, the series (3.1) defines a function of t which has a

singularity at t=c. Hence its radius of convergence is c for every real x.

That is,

r\f{2n)(x)\V'n     1
lim sup

n\

Stirling's formula now yields (3.4).

Corollary 2.2.   Iff(x) is defined as in Theorem 2, then

(3.5) lim sup(l/n) \fin)(x)\2/n = 1/(2«?).

so thatf(x) is entire of order 2 and of type l/(4c).

By familiar properties of the Weierstrass transform we have from

equation (3.2) that

d CK  d
(3.6) — u(x, t) =       — k(x - y, t) dx(y),

OX J-oo OX

valid for Re / >0. As before, the Taylor expansion

.H'.^yC-y
u(x0, C — f) = 2

dx n=o dx dtn
u(x0, c) ■

n\ n=0 n\

must hold at last for |r|<c. Hence

|/<2n+1,(x0)
lim sup

n!

l/n        j

C

This is equivalent to

lim sup 1/(2n + 1) |/<2n+1)(x0)|2/(2"+1) = l/(2ce).
n-^oo

This inequality combined with equation (3.4) yields equation (3.5), and

the proof is complete. Unlike the function u(x, t) of equation (3.2) its
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derivative (3.6) need not be singular at /=0 for all x. Indeed if a(y) is odd,

the derivative is identically zero when x=0.

4. Examples.   In the introduction we observed that for the validity of

Theorem 1 it is essential that a.(y) should not be absolutely continuous.

We give further examples here to show this.

Example A.

-Iu(x, t) =      k(x- y, t) dy = |erfc(-x/(4i)1/2).
Jo

Here  a(y) is nondecreasing and  abolutely continuous.  The function

u(x, t) is singular at i=0 for every x except x=0 when «(0, 0 —i-

Example B.

/     x     f",, x     r      2lJ       exp[-x2/(l + 4i)]u(x, t) =      k(x - y, i)exp[->>2] dy = —^-—;v   7    n .
J-» (1 + 4i)1/2

Again a(v) is nondecreasing and absolutely continuous, even bounded.

The function u(x, t) is not singular at i=0 for any x. Note that this type of

situation always obtains when a(y) is entire of order 2 and of finite type.

For then u(x, t) can be extended as a solution of the heat equation into a

region -P<t^0. See D. V. Widder [1962, Corollary 3.1b].

We can show also that the nondecreasing character of a(y) is an essential

hypothesis in Theorem 1.

Example C.

«OO-i,     |/|<i,
= 0,        |f|>l,

u(x, t) = k(x + 1,0 — k(x - 1,0-

The function u(x, t) is singular at /=0 for every x except x=0, when

u(0, 0=0. Here a(y) is not absolutely continuous or monotonie.
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