TIME-VARIABLE SINGULARITIES FOR SOLUTIONS OF THE HEAT EQUATION

D. V. WIDDER

ABSTRACT. A solution u(x, t) of the two-dimensional heat equation $u_{xx} = u_t$ may have the representation

$$u(x,t) = \int_{-\infty}^{\infty} k(x-y,t) \, d\alpha(y)$$

where $k(x, t) = (4\pi t)^{-1/2} \exp[-x^2/(4t)]$, valid in some strip 0 < t < c of the x, t-plane. If so, $u(x_0, t)$ is known to be an analytic function of the complex variable t in the disc $\operatorname{Re}(1/t) > 1/c$, for each fixed real x_0 . It is shown here that if $\alpha(y)$ is nondecreasing and not absolutely continuous then $u(x_0, t)$ must have a singularity at t=0. Examples show that both restrictions on $\alpha(y)$ are necessary for that conclusion. It is shown further under the same hypothesis on $\alpha(y)$, that for each fixed positive $t_0 < c$, $u(x, t_0)$ is an entire function of x of order 2 and of type $1/(4t_0)$. Compare the function k(x, t) itself for a check on both conclusions.

1. Introduction. In a recent note [1969] H. Pollard and I discussed the representation of a function f(x) by the Gaussian integral

(1.1)
$$f(x) = \int_{-\infty}^{\infty} k(x - y, a) \, d\alpha_a(y),$$

where $\alpha_a(y)$ is a distribution function and k(x, t) is the fundamental solution of the heat equation,

$$k(x, t) = (4\pi t)^{-1/2} \exp[-x^2/(4t)].$$

We showed that if f(x) has one such representation for a given constant a, then there is always a finite maximum value a=b for which (1.1) holds. In fact, Pollard in an earlier note (unpublished) gave a precise formula for b in the special case in which the corresponding distribution function $\alpha_b(y)$ is not absolutely continuous. It was

$$1/b = \lim_{-\infty < x < \infty} \lim_{n \to \infty} \sup (e/n) |f^{(2n)}(x)|^{1/n}.$$

© American Mathematical Society 1972

Received by the editors May 18, 1971.

AMS 1970 subject classifications. Primary 35K05, 44A15; Secondary 30A14.

Key words and phrases. Heat equation, fundamental solution, Gaussian integral, entire function, order and type of entire function, singularity of analytic function.

[March

The present note evolved from my effort to simplify this formula. I show that the symbol l.u.b. may be omitted because what follows it is independent of x. I prove in fact that f(x), as defined by (1.1) with $\alpha_a(y)$ a non-absolutely continuous distribution function, is entire of order 2 and of type 1/(4a). Since order and type are independent of origin we have from a familiar formula (R. P. Boas [1954, p. 11])

$$\limsup_{n \to \infty} (1/n) |f^{(n)}(x)|^{2/n} = 2/(4ae).$$

We show that this equation remains true for the present function f(x) when n is replaced by 2n and thus obtain the desired simplification of Pollard's formula.

The above conclusion about the order and type of f(x) really comes as a corollary to the principal theorem of this note, one which seems to have independent significance in the theory of heat conduction. I prove that if u(x, t) is a solution of the heat equation

(1.2)
$$\partial^2 u / \partial x^2 = \partial u / \partial t$$

which has the representation

$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) \, d\alpha(y),$$

where $\alpha(y)$ is a nondecreasing and nonabsolutely continuous function, then u(x, t), considered as a function of the complex variable t, has a singularity at t=0 for every real x. A case in point is k(x, t) itself, for which $\alpha(y)$ is a step-function with a single positive jump. The exponential factor in k(x, t) has an essential singularity at t=0 for every x except x=0, and even then the other factor has the predicted singularity. For the validity of the theorem, the hypothesis that $\alpha(y)$ is not absolutely continuous is essential. The simplest examples show this. Indeed if $\alpha(y)=y$ then u(x, t) is identically equal to unity. In §4 appear further examples to show this point and another to show that the nondecreasing character of $\alpha(y)$ cannot be omitted in the hypothesis either.

2. Time-variable singularities of temperature functions. We now state our principal result as a theorem.

THEOREM 1. If

(2.1)
$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) \, d\alpha(y), \qquad 0 < t < c,$$

where $\alpha(y)$ is nondecreasing and not absolutely continuous, then for every real x_0 the function $u(x_0, t)$ is analytic in the disc $\operatorname{Re}(1/t) > 1/c$ of the complex t-plane and has a singularity at t=0.

Since

$$u(x - x_0, t) = \int_{-\infty}^{\infty} k(x - y, t) \, d\alpha(y - x_0),$$

it is only necessary to consider the case $x_0=0$ in (2.1). That equation is then equivalent to

$$(4\pi t)^{1/2}u(0, t) = \int_0^\infty \exp[-y^2/(4t)] d[\alpha(y) - \alpha(-y)].$$

Since this integral becomes a Laplace transform in the variable 1/(4t) after y^2 is replaced by a new variable of integration, the stated analyticity of u(0, t) is apparent. The disc in question has its center at the real point t=c/2 of the complex t-plane and has radius c/2.

To prove that t=0 is a singularity we assume the contrary and seek a contradiction. That is, we assume

(2.2)
$$u(0, t) = \sum_{n=0}^{\infty} a_n t^n, \quad |t| < \rho.$$

I have proved elsewhere (D. V. Widder [1970]) that any such function has the integral representation

(2.3)
$$u(0, t) = \int_0^\infty k(y, t)\varphi(y) \, dy,$$

where $\varphi(y)$ is an even entire function. We sketch the proof, which depends on the identity

(2.4)
$$(2n)! t^{n} = 2(n!) \int_{0}^{\infty} k(y, t) y^{2n} dy, \quad t > 0.$$

Combining (2.4) and (2.2) we obtain (2.3) if

$$\varphi(y) = 2\sum_{n=0}^{\infty} n! a_n \frac{y^{2n}}{(2n)!}$$

The term-by-term integration is justified by use of the relation

$$\limsup |a_n|^{1/n} \leq 1/\rho,$$

assumed in (2.2). This relation also shows that $\varphi(y)$ is entire.

The two integral representations for u(0, t) and the uniqueness theorem for Laplace transforms now insure that

(2.5)
$$\alpha(y) - \alpha(-y) = \int_0^y \varphi(r) \, dr$$

for $y \ge 0$. Since both sides of this equation clearly represent odd functions it must also hold for $-\infty < y < \infty$. From (2.5) we have for any h > 0 and

1972]

any y_0 that

$$[\alpha(y_0 + h) - \alpha(y_0)] + [\alpha(-y_0) - \alpha(-y_0 - h)] = \int_{y_0}^{y_0 + h} \varphi(r) dr.$$

Since $\alpha(y)$ is nondecreasing it follows that

$$0 \leq \alpha(y_0 + h) - \alpha(y_0) \leq \int_{y_0}^{y_0 + h} \varphi(r) dr,$$

$$0 \leq \alpha(-y_0) - \alpha(-y_0 - h) \leq \int_{y_0}^{y_0 + h} \varphi(r) dr.$$

Allowing h to approach zero we see that $\alpha(y_0+)=\alpha(y_0)$ and $\alpha(-y_0)=\alpha(-y_0-)$. Since y_0 is arbitrary it is seen that $\alpha(y)$ is continuous for $-\infty < y < \infty$. Moreover,

$$0 \leq \frac{\alpha(y_0+h) - \alpha(y_0)}{h} \leq \frac{1}{h} \int_{y_0}^{y_0+h} \varphi(r) dr, \qquad 0 \leq \overline{D}_+ \alpha(y_0) \leq \varphi(y_0).$$

That is, one of the Dini derivatives is finite at every point. This fact with the continuity of $\alpha(y)$ guarantees that $\alpha(y)$ is absolutely continuous. See, for example, S. Saks [1937, Theorem 4.6 on p. 271 and Theorem 6.7 on p. 227]. But this contradicts a hypothesis of the theorem, as desired.

3. Consequences of the main theorem. The previous result has immediate consequences for functions f(x) which have the integral representation (1.1).

THEOREM 2. If

$$f(x) = \int_{-\infty}^{\infty} k(x - y, c) \, d\alpha(y),$$

where $\alpha(y)$ is nondecreasing, bounded and not absolutely continuous, then for all real x and for |t| < c,

(3.1)
$$\sum_{n=0}^{\infty} \frac{(-t)^n}{n!} f^{(2n)}(x) = \int_{-\infty}^{\infty} k(x-y, c-t) \, d\alpha(y).$$

The function

(3.2)
$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) d\alpha(y)$$

satisfies the hypotheses of Theorem 1 for every positive c since the integral (3.2) clearly converges for all positive t. Hence by that theorem $u(x_0, t)$ is analytic in the complex half-plane Re t>0. Consequently the Taylor expansion

(3.3)
$$u(x_0, c-t) = \sum_{n=0}^{\infty} \frac{\partial^n u(x_0, c)}{\partial t^n} \frac{(-t)^n}{n!}$$

[March

is valid for |t| < c. But since u(x, t) satisfies the heat equation (1.2) we see that

$$\frac{\partial^n}{\partial t^n}u(x_0,c)=\frac{\partial^{2n}}{\partial x^{2n}}u(x_0,c)=f^{(2n)}(x_0),$$

and equation (3.3) is equivalent to (3.1).

1972]

COROLLARY 2.1. If f(x) is defined as in Theorem 2, then

(3.4) ,
$$\limsup_{n \to \infty} \frac{|f^{(2n)}(x)|^{1/n}}{n} = \frac{1}{ce}, \quad -\infty < x < \infty.$$

For, by Theorem 1, the series (3.1) defines a function of t which has a singularity at t=c. Hence its radius of convergence is c for every real x. That is,

$$\limsup_{n\to\infty}\left[\frac{|f^{(2n)}(x)|}{n!}\right]^{1/n}=\frac{1}{c}.$$

Stirling's formula now yields (3.4).

COROLLARY 2.2. If f(x) is defined as in Theorem 2, then

(3.5)
$$\limsup_{n \to \infty} (1/n) |f^{(n)}(x)|^{2/n} = 1/(2ce).$$

so that f(x) is entire of order 2 and of type 1/(4c).

By familiar properties of the Weierstrass transform we have from equation (3.2) that

(3.6)
$$\frac{\partial}{\partial x} u(x, t) = \int_{-\infty}^{\infty} \frac{\partial}{\partial x} k(x - y, t) d\alpha(y),$$

valid for Re t > 0. As before, the Taylor expansion

$$\frac{\partial}{\partial x}u(x_0, c-t) = \sum_{n=0}^{\infty}\frac{\partial^{n+1}}{\partial x\,\partial t^n}u(x_0, c)\frac{(-t)^n}{n!} = \sum_{n=0}^{\infty}f^{(2n+1)}(x_0)\frac{(-t)^n}{n!}$$

must hold at last for |t| < c. Hence

$$\limsup_{n\to\infty}\left|\frac{f^{(2n+1)}(x_0)}{n!}\right|^{1/n}\leq \frac{1}{c}.$$

This is equivalent to

$$\limsup_{n \to \infty} \frac{1}{(2n+1)} |f^{(2n+1)}(x_0)|^{2/(2n+1)} \leq \frac{1}{(2ce)}.$$

This inequality combined with equation (3.4) yields equation (3.5), and the proof is complete. Unlike the function u(x, t) of equation (3.2) its

derivative (3.6) need not be singular at t=0 for all x. Indeed if $\alpha(y)$ is odd, the derivative is identically zero when x=0.

4. Examples. In the introduction we observed that for the validity of Theorem 1 it is essential that $\alpha(y)$ should not be absolutely continuous.

We give further examples here to show this.

Example A.

$$u(x, t) = \int_0^\infty k(x - y, t) \, dy = \frac{1}{2} \operatorname{erfc}(-x/(4t)^{1/2}).$$

Here $\alpha(y)$ is nondecreasing and abolutely continuous. The function u(x, t) is singular at t=0 for every x except x=0 when $u(0, t)\equiv \frac{1}{2}$.

EXAMPLE B.

$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) \exp[-y^2] \, dy = \frac{\exp[-x^2/(1 + 4t)]}{(1 + 4t)^{1/2}}$$

Again $\alpha(y)$ is nondecreasing and absolutely continuous, even bounded. The function u(x, t) is not singular at t=0 for any x. Note that this type of situation always obtains when $\alpha(y)$ is entire of order 2 and of finite type. For then u(x, t) can be extended as a solution of the heat equation into a region $-\rho < t \leq 0$. See D. V. Widder [1962, Corollary 3.1b].

We can show also that the nondecreasing character of $\alpha(y)$ is an essential hypothesis in Theorem 1.

EXAMPLE C.

$$\alpha(y) = 1, \quad |t| < 1,$$

= 0, |t| > 1,
$$u(x, t) = k(x + 1, t) - k(x - 1, t).$$

The function u(x, t) is singular at t=0 for every x except x=0, when $u(0, t)\equiv 0$. Here $\alpha(y)$ is not absolutely continuous or monotonic.

References

[1937] S. Saks, *Théorie de l'intégrale*, Monografie Mat., vol. 2, PWN, Warsaw, 1933; English transl., Monografie Mat., vol. 7, PWN, Warsaw, 1937.

[1954] R. P. Boas, Jr., *Entire functions*, Academic Press, New York, 1954. MR 16, 914.

[1962] D. V. Widder, Analytic solutions of the heat equation, Duke Math. J. 29 (1962), 497-503. MR 28 #364.

[1969] H. Pollard and D. V. Widder, Gaussian representations related to heat conduction. Arch. Rational Mech. Anal. 35 (1969), 253-258. MR 39 #7356.

[1970] D. V. Widder, Analytic methods in matematical physics, Bloomington Conference, Indiana University, Bloomington, Indiana, 1970, pp. 1–578. See also: Theorem 6.2 on p. 389.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138