Note relating Bochner integrals and reproducing kernels to series expansions on a Gaussian Banach space
Author:
Raoul D. LePage
Journal:
Proc. Amer. Math. Soc. 32 (1972), 285-288
MSC:
Primary 60G15
DOI:
https://doi.org/10.1090/S0002-9939-1972-0296987-3
MathSciNet review:
0296987
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Fernique’s recent proof of finiteness of positive moments of the norm of a Banach-valued Gaussian random vector $\mathfrak {X}$ is used to prove rth mean convergence of reproducing kernel series representations of $\mathfrak {X}$. Embedding of the reproducing kernel Hilbert space into the Banach range of X is explicitly given by Bochner integration. This work extends and clarifies work of Kuelbs, Jain and Kallianpur.
- S. D. Chatterji, A note on the convergence of Banach-space valued martingales, Math. Ann. 153 (1964), 142–149. MR 161376, DOI https://doi.org/10.1007/BF01361182
- Xavier Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1698–A1699 (French). MR 266263
- Naresh C. Jain and G. Kallianpur, Norm convergent expansions for Gaussian processes in Banach spaces, Proc. Amer. Math. Soc. 25 (1970), 890–895. MR 266304, DOI https://doi.org/10.1090/S0002-9939-1970-0266304-1
- J. Kuelbs, Expansions of vectors in a Banach space related to Gaussian measures, Proc. Amer. Math. Soc. 27 (1971), 364–370. MR 267615, DOI https://doi.org/10.1090/S0002-9939-1971-0267615-7
- Emanuel Parzen, An appproach to time series analysis, Ann. Math. Statist. 32 (1961), 951–989. MR 143315, DOI https://doi.org/10.1214/aoms/1177704840
- John B. Walsh, A note on uniform convergence of stochastic processes, Proc. Amer. Math. Soc. 18 (1967), 129–132. MR 203792, DOI https://doi.org/10.1090/S0002-9939-1967-0203792-0
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G15
Retrieve articles in all journals with MSC: 60G15
Additional Information
Keywords:
Fernique,
Gaussian,
Banach,
series,
reproducing kernel
Article copyright:
© Copyright 1972
American Mathematical Society