NOTE RELATING BOCHNER INTEGRALS
AND REPRODUCING KERNELS TO SERIES
EXPANSIONS ON A GAUSSIAN BANACH
SPACE

RAOUL D. LE PAGE

Abstract. Fernique's recent proof of finiteness of positive
moments of the norm of a Banach-valued Gaussian random vector
\mathcal{X} is used to prove rth mean convergence of reproducing kernel
series representations of \mathcal{X}. Embedding of the reproducing kernel
Hilbert space into the Banach range of \mathcal{X} is explicitly given by
Bochner integration. This work extends and clarifies work of
Kuelbs, Jain and Kallianpur.

Fernique [2] has recently proved in a most elementary way that
\[
\lim_{n \to +} E \exp \alpha \|X\|^2_n < \infty
\]
for every centered Gaussian random vector X taking values in a real and separable Banach space B. As will be shown
below, this result can be used to provide a dramatically simple proof of
the strong convergence of certain representations of \mathcal{X} by a series in B, as
given by Kuelbs [4] and Jain-Kallianpur [3]. The role of reproducing
kernel Hilbert spaces in such representations is sharply revealed by this
approach.

In this paper, B is a real and separable Banach space, B^* its topological
dual, \mathcal{B} is the σ-algebra generated by the open subsets of B, and P is a
probability measure on \mathcal{B} for which the induced distributions of the
random variables $x^* \in B^*$ are all Gaussian with zero means.

Suppose that in addition to being a Banach space, B is also a subset of
the set of real functions on a set T (distinct points of B also being distinct
as real functions on T), and that for each $t \in T$ the evaluation mapping X_t
defined by $X_t(x) = x(t)$, $x \in B$, is continuous on B. For example, if T
is taken equal to B^*, each $x \in B$ may be viewed as the continuous linear
evaluation function on B^* defined by $x(x^*) = x^*(x)$, $x^* \in B^*$. Let L
denote P quadratic-mean closure of $\{X_t, t \in T\}$ viewed as a Hilbert subspace of

Received by the editors February 6, 1971 and, in revised form, April 26, 1971.
AMS 1970 classifications. Primary 60G15; Secondary 60G17.
Key words and phrases. Fernique, Gaussian, Banach, series, reproducing kernel.
1 Research partially supported by NSF Grant GP-23480.
$L_2(B, \mathcal{B}, P)$, and denote by $H(R)$ the reproducing kernel Hilbert space of

$$R(s, t) = \int_B x(s)x(t)P(dx), \quad (s, t) \in T \times T.$$

It is well known (e.g. see [5]) that \mathcal{L} is isometrically isomorphic to $H(R)$ under the linear extension of the mapping $X_t \mapsto R(t, \cdot)$, $t \in T$, and that $H(R)$ is characterized as the unique Hilbert space of real functions on T containing the sections $R(t, \cdot)$, $t \in T$, and satisfying $f(t) = (f, R(t, \cdot))_{H(R)}$ for every $t \in T$, $f \in H(R)$. The latter is termed the reproducing property and this isomorphism of \mathcal{L} with $H(R)$ is termed the natural isomorphism.

Proposition. Consequent to the preceding assumptions:

(a) If $L \in \mathcal{L}$, the element of $H(R)$ to which L corresponds under the natural isomorphism is given by the convergent Bochner integral

$$x_L = \left. \int_B L(x)xP(dx) \right|_{H(R)} \in B$$

which may be calculated pointwise

$$x_L(t) = \int_B L(x)x(t)P(dx), \quad t \in T.$$

(b) If L_1, L_2, \ldots are a complete orthonormal set for \mathcal{L}, then for every $r \geq 1$, as $n \to \infty$,

$$\int_B \left\| x - \sum_{k=1}^n L_k(x)L_k \right\|_B^r P(dx) \to 0.$$

In particular, this is a series representation by $H(R)$ functions, the series converges almost surely, and closure of $H(R)$ in B gives the support of P.

Proof. Suppose $L \in \mathcal{L}$. Let $v(x) = L(x)x$, $x \in B$. Then v is a Banach-valued random vector and for every $r \geq 1$,

$$\int_B \|v(x)\|_B^r P(dx) \leq \left(\int_B L^2r(x)P(dx) \int_B \|x\|_B^{2r} P(dx) \right)^{1/2}. $$

Since L is the P quadratic-mean limit of P-Gaussian random variables, L is itself P-Gaussian and $\int_B L^2r_B(x)P(dx) < \infty$. By Fernique's result quoted earlier, $\int_B \|x\|_B^{2r}P(dx) < \infty$. Therefore $\int_B \|v(x)\|_B^r P(dx) < \infty$ for each $r \geq 1$.

(a) Suppose $L \in \mathcal{L}$. Taking $r=1$ in the above we conclude [1] that the Bochner integral $x_L = \int_B L(x)xP(dx) \in B$ exists. For each $t \in T$, continuity

\footnote{In fact $\|x_L\|_B \leq \|x_L\|_{H(R)}\|P\|$ where $\|P\|^2 = \int_B \|x\|_B^2 P(dx) < \infty$, follows immediately once it is established that x_L is companion to L under the natural isomorphism.}
of the linear \(X_t \) enables passage of \(X_t \) inside the Bochner integral. Let \(\hat{L} \in H(R) \) correspond to \(L \) under the natural isomorphism. Then, for each \(t \in T \),

\[
\hat{L}(t) = (\hat{L}, R(t, \cdot))_{H(H)} = (L, X_t) = x_L(t).
\]

(b) Suppose \(L_1, L_2, \ldots \) are a complete orthonormal set for \(L \). These \(L_1, L_2, \ldots \) have the \(P \)-law of independent and identically distributed Gaussian random variables with means zero and variances unity. If \(n > 0 \), \(\hat{L} \in (L_1, \ldots, L_n)_x \) (the submanifold of \(L \) spanned by \(L_1, \ldots, L_n \)) then

\[
\sum_{k=1}^{k=n} L_k x_k \Leftrightarrow \sum_{k=1}^{k=n} L_k L(x_k) P(dx) = L \quad \text{a.e. } P.
\]

Therefore

\[
\sum_{k=1}^{k=n} L_k x_k, \quad \mathcal{F}_n = \sigma \{L_1, \ldots, L_n\}, \quad n \geq 1,
\]

is a strong martingale in the sense of [1]. That is, for \(n \geq 1 \),

\[
(A \in \mathcal{F}_n) \Rightarrow \left(\int \sum_{k=1}^{k=n} L_k(x) x_k P(dx) = \int x P(dx) \right).
\]

Since \(B \subseteq P \)-completion of \(\sigma\{U_n, \mathcal{F}_n\} \), we conclude from [1, Theorem 1] that, as \(n \to \infty \),

\[
\left\| \hat{x} - \sum_{k=1}^{k=n} L_k(x) x_k \right\|_{H^1} \to 0 \quad \text{a.e. } P.
\]

This implies that closure of \(H(R) \) in \(B \) gives the support of \(P \). For if \(x \in B \) and every \(B \) open neighborhood of \(x \) has positive probability then there are sums of the type \(\sum_{k=1}^{k=n} L_k(x_k) x_{L_k} \) (for \(n \geq 1 \), and \(x \in B \)) of arbitrary \(B \)-closeness to \(x \), and (by (a)) belonging to \(H(R) \). If, on the other hand, there is an \(\epsilon > 0 \) and \(L \in L \) for which an \(\epsilon \)-radius \(B \)-sphere containing \(x \) has \(P \)-probability zero, it follows from mutual absolute continuity of Gaussian measures under translation by \(H(R) \) functions (e.g. see [5]) that an \(\epsilon \)-radius \(B \)-sphere containing the origin of \(B \) has zero \(P \)-probability. For the purpose of proving this impossible we may as well assume this sphere is centered at the origin. Then choose \(n \) sufficiently large so that with positive \(P \)-probability \(\| \hat{x} \|_{H^1} - \| \sum_{k=1}^{k=n} L_k(x) x_{L_k} \|_B < \epsilon \). Since the latter event involves only the tail of this series in mutually independent summands, it suffices to prove that \(\| \sum_{k=1}^{k=n} L_k(x) x_{L_k} \|_B \) has positive probability of being in every interval about zero. By footnote 1 however

\[
\left\| \sum_{k=1}^{k=n} L_k(x) x_{L_k} \right\|_B^2 \leq \| P \|_2 \sum_{k=1}^{k=n} L_k^2(x) < \infty
\]
and the P-probability that $\sum_{k=1}^{n} L_{n}(x)^{2} < \delta$ is positive for every $\delta > 0$. Finally, for every $n \geq 1$, and $r \geq 1$,
\[
\left(\int_{B} \left\| \sum_{k=1}^{n} L_{n}(x) x_{L_{n}} P(dx) \right\|^{r}_{B} P(dx) \right)^{1/r} < \infty.
\]
From [1, Theorem 1] we also conclude that, as $n \to \infty$,
\[
\int_{B} \left\| x - \sum_{k=1}^{n} L_{k}(x) x_{L_{k}} \right\|^{r}_{B} P(dx) \to 0. \hfill \Box
\]

For applications of the Proposition see [3], [4]. In [6], Walsh applied the Chatterji Theorem [1, Theorem 1] in much the same way as here, to the Wiener measure case. The reproducing kernel representation (a) was not given however. More recently, Kuelbs [4] proved the existence of a representation of type (b) bypassing the Chatterji result, and hence avoiding the question of integrability of $\|x\|_{B}$. The role of reproducing kernels was not discussed. Finally, Jain and Kallianpur [3] gave still another proof bypassing the Chatterji result, showing the existence of certain embeddings of the reproducing kernel Hilbert space into B. The representation (a) was not given. Neither [3] nor [4] discuss the convergence in rth mean.

REFERENCES

DEPARTMENT OF STATISTICS AND PROBABILITY, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823