A NOTE ON \mathcal{D}-REALCOMPACTIFICATIONS

ANTHONY J. D'ARISTOTLE

Abstract. Orrin Frink showed that the real-valued functions over a Tychonoff space X which may be continuously extended to $\omega(\mathcal{D})$, the Wallman-type compactification associated with a normal base \mathcal{D} for X, are those which are \mathcal{D}-uniformly continuous.

Let \mathcal{D} be a delta normal base on a Tychonoff space X, and let $\eta(\mathcal{D})$ be the corresponding \mathcal{D}-realcompactification of X. In this note we show that countable \mathcal{D}-uniform continuity is a sufficient but not a necessary condition for continuously extending real-valued functions over X to $\eta(\mathcal{D})$.

In [3], Orrin Frink utilized the notion of a normal base to obtain Hausdorff compactifications for Tychonoff or completely regular T_1 spaces X. A normal base \mathcal{D} for the closed sets of a space X is a base which is a disjunctive ring of sets, disjoint members of which may be separated by disjoint complements of members of \mathcal{D}. Frink proved that if \mathcal{D} is a normal base for a T_1 space X, then the space $\omega(\mathcal{D})$ consisting of the \mathcal{D}-ultrafilters, is a Hausdorff compactification of X. By choosing different normal bases \mathcal{D} for a noncompact space X, different Hausdorff compactifications of X may be obtained.

In [1], Alo and Shapiro used \mathcal{D}-ultrafilters from a delta normal base (a normal base closed under countable intersections) to introduce a new space $\eta(\mathcal{D})$ consisting of those \mathcal{D}-ultrafilters with the countable intersection property. To each delta normal base \mathcal{D} on X there corresponds a delta normal base \mathcal{D}^* on $\eta(\mathcal{D})$, and they have shown that every \mathcal{D}^*-ultrafilter with the countable intersection property is fixed, i.e., $\eta(\mathcal{D})$ is \mathcal{D}^*-realcompact. For many delta normal bases \mathcal{D}, $\eta(\mathcal{D})$ is realcompact in the usual sense but, in [5], it has been shown that this is not always the case.

A real function f defined over a space X with normal base \mathcal{D} is said to be \mathcal{D}-uniformly continuous if for every positive epsilon there exists a finite open cover of X by \mathcal{D}-complements, on each of which the oscillation of f is less than epsilon. Frink showed that f may be continuously extended to $\omega(\mathcal{D})$ if and only if f is \mathcal{D}-uniformly continuous.

Presented to the Society, January 22, 1971; received by the editors May 21, 1971.

AMS 1970 subject classifications. Primary 54C20, 54C30, 54C45.

Key words and phrases. Normal base, delta normal base, \mathcal{D}-uniform continuity, countable \mathcal{D}-uniform continuity.
The analogous condition for a space X with a delta normal base is countable \mathcal{L}-uniform continuity: A real function f defined over a space X with delta normal base \mathcal{L} is countable \mathcal{L}-uniformly continuous if corresponding to every positive epsilon there exists a finite or denumerable open cover of X by \mathcal{L}-complements, on each of which the oscillation of f is less than epsilon. In this note we show that countable \mathcal{L}-uniform continuity is a sufficient but not a necessary condition for extendibility to $\eta(\mathcal{L})$.

For definitions and a thorough discussion of the results cited above, the reader is referred to [1] and [3].

Theorem. Every countable \mathcal{L}-uniformly continuous function on X can be continuously extended to a real-valued function on $\eta(\mathcal{L})$.

Proof. If \mathcal{L} is a delta normal base for X, let \mathcal{U} be the collection of all free \mathcal{L}-ultrafilters on X with the countable intersection property. Then $\eta(\mathcal{L})=X\cup\mathcal{U}$ and the topology for $\eta(\mathcal{L})$ is that obtained by taking as a base for the closed sets the family of all sets A^* of the form $A\cup\{A\in\mathcal{U}|A\in\mathcal{A}\}$ where $A\in\mathcal{L}$.

If f is a countable \mathcal{L}-uniformly continuous function on X, we define a function g which extends f from X to $\eta(\mathcal{L})$ as follows. If $x\in X$ we let $g(x)=f(x)$. If $s\in\mathcal{U}$ then the family $S_{sf}=\{f(A):A\in\mathcal{A}\}$ has the finite intersection property and is therefore a subbase for the filter \mathcal{F}_{sf} consisting of all supersets of finite intersections of members of S_{sf}. The filter \mathcal{F}_{sf} is a Cauchy filter and therefore converges uniquely to a real number which we call $g(s)$.

That g is continuous at each point of X is readily verified. It remains to show that g is continuous at each point $s\in\mathcal{U}$. Let the family $\{X-C_i\}_{i=1}^{\infty}$ be a denumerable cover of X by \mathcal{L}-complements, on each member of which the oscillation of f is less than $\varepsilon/3$ (we lose no generality in assuming that the cover of X is denumerable). We may suppose that $C_i\in\mathcal{B}$ so that there is an element $Q\in\mathcal{B}$ with $Q\subseteq X-C_i$. We show that

$$g[\eta(\mathcal{L}) - C_i] = g[(X-C_i) \cup \{A \in \mathcal{U}: \exists P \in \mathcal{A} \text{ with } P \subseteq X-C_i\}] \subseteq S(g(\mathcal{B}), \varepsilon).$$

Now $g(\mathcal{B}) \in cl_{R}[f(Q)]$ and we choose $q \in Q$ so that $|g(\mathcal{B}) - f(q)| < \varepsilon/3$. If $y \in X-C_i$ we then have

$$|g(\mathcal{B}) - g(y)| \leq |g(\mathcal{B}) - f(q)| + |f(q) - g(y)| < \varepsilon/3 + \varepsilon/3 < \varepsilon.$$

It therefore follows that $g(X-C_i) \subseteq S(g(\mathcal{B}), \varepsilon)$. If $A \in \mathcal{U}$ and there is a $P \in \mathcal{A}$ with $D \subseteq X-C_1$, we choose a point $p \in P$ satisfying $|g(A) - f(p)| < \varepsilon/3$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The points q and p are members of $X - C_1$ and so

$$|g(\mathcal{A}) - g(\mathcal{B})| \leq |g(\mathcal{A}) - f(p)| + |f(p) - f(q)| + |f(q) - g(\mathcal{B})|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Thus g is a continuous, real-valued function on $\eta(\mathcal{F})$.

In case \mathcal{F} is the collection of all zero-sets of a Tychonoff space X, then $\eta(\mathcal{F})$ is precisely the Hewitt realcompactification of X. By observing that a real-valued function on a topological space is continuous if and only if it is countable zero-set uniformly continuous, we have the following well-known result [4] as a

Corollary. Every continuous, real-valued function on a Tychonoff space X can be continuously extended to a real-valued function on X, the Hewitt realcompactification of X.

However, countable \mathcal{F}-uniform continuity is not a necessary condition for extendibility. To see this, we will make use of an example given by A. Steiner and E. Steiner in [5].

Let $X = [0, 1]$ with the discrete topology, let \mathcal{F}_1 be the family of all closed subsets of X with respect to the usual topology on $[0, 1]$, and let \mathcal{F}_2 be the family of all subsets of X which are finite or whose complement is countable. Then the family \mathcal{F} of countable intersections of finite unions of members of $\mathcal{F}_1 \cup \mathcal{F}_2$ is a delta normal base. Furthermore, if \mathcal{A} is \mathcal{F}-ultrafilter, then \mathcal{A}, being prime, contains a decreasing sequence of closed intervals whose lengths converge to 0; so if \mathcal{A} has the countable intersection property, then \mathcal{A} is fixed. Thus $\eta(\mathcal{F}) = X$.

The \mathcal{F}-complements are all sets U of the form either:

(i) U is denumerable or finite;

(ii) U is open with respect to the usual topology on $[0, 1]$; or

(iii) $U = V_1 \cup V_2$ where V_1 has form (i) and V_2 form (ii). The function $f: X \rightarrow \mathbb{R}$ equal to 1 on the rationals and 0 on the irrationals is certainly extendible to $\eta(\mathcal{F}) = X$. However, if $\{U_i\}_{i=1}^\infty$ is a cover of X by \mathcal{F}-complements, then at least one U_i has form. (ii) or (iii). Hence f is not countable \mathcal{F}-uniformly continuous.

A delta normal base \mathcal{F} is a strong delta normal base if each $A \in \mathcal{F}$ is a countable intersection of \mathcal{F}-complements. For such normal bases, $\eta(\mathcal{F})$ is always realcompact [2].

The normal base \mathcal{F} in the above example is easily seen to be strong delta. Hence, also in this situation, countable \mathcal{F}-uniform continuity is a sufficient but not a necessary condition for extendibility.
REFERENCES

Department of Mathematics, State University of New York, College at Geneseo, Geneseo, New York 14454