A NOTE ON \mathcal{I}-REALCOMPACTIFICATIONS

ANTHONY J. D'ARISTOTLE

Abstract. Orrin Frink showed that the real-valued functions over a Tychonoff space X which may be continuously extended to $\omega(\mathcal{I})$, the Wallman-type compactification associated with a normal base \mathcal{I} for X, are those which are \mathcal{I}-uniformly continuous.

Let \mathcal{I} be a delta normal base on a Tychonoff space X, and let $\eta(\mathcal{I})$ be the corresponding \mathcal{I}-realcompactification of X. In this note we show that countable \mathcal{I}-uniform continuity is a sufficient but not a necessary condition for continuously extending real-valued functions over X to $\eta(\mathcal{I})$.

In [3], Orrin Frink utilized the notion of a normal base to obtain Hausdorff compactifications for Tychonoff or completely regular T_1 spaces X. A normal base \mathcal{I} for the closed sets of a space X is a base which is a disjunctive ring of sets, disjoint members of which may be separated by disjoint complements of members of \mathcal{I}. Frink proved that if \mathcal{I} is a normal base for a T_1 space X, then the space $\omega(\mathcal{I})$ consisting of the \mathcal{I}-ultrafilters, is a Hausdorff compactification of X. By choosing different normal bases \mathcal{I} for a noncompact space X, different Hausdorff compactifications of X may be obtained.

In [1], Alo and Shapiro used \mathcal{I}-ultrafilters from a delta normal base (a normal base closed under countable intersections) to introduce a new space $\eta(\mathcal{I})$ consisting of those \mathcal{I}-ultrafilters with the countable intersection property. To each delta normal base \mathcal{I} on X there corresponds a delta normal base \mathcal{I}^* on $\eta(\mathcal{I})$, and they have shown that every \mathcal{I}^*-ultrafilter with the countable intersection property is fixed, i.e., $\eta(\mathcal{I})$ is \mathcal{I}^*-realcompact. For many delta normal bases \mathcal{I}, $\eta(\mathcal{I})$ is realcompact in the usual sense but, in [5], it has been shown that this is not always the case.

A real function f defined over a space X with normal base \mathcal{I} is said to be \mathcal{I}-uniformly continuous if for every positive epsilon there exists a finite open cover of X by \mathcal{I}-complements, on each of which the oscillation of f is less than epsilon. Frink showed that f may be continuously extended to $\omega(\mathcal{I})$ if and only if f is \mathcal{I}-uniformly continuous.

Presented to the Society, January 22, 1971; received by the editors May 21, 1971.
AMS 1970 subject classifications. Primary 54C20, 54C30, 54C45.
Key words and phrases. Normal base, delta normal base, \mathcal{I}-uniform continuity, countable \mathcal{I}-uniform continuity.

© American Mathematical Society 1972

615
The analogous condition for a space \(X \) with a delta normal base is

countable \(\mathcal{L} \)-uniform continuity: A real function \(f \) defined over a space \(X \) with delta normal base \(\mathcal{L} \) is countable \(\mathcal{L} \)-uniformly continuous if corresponding to every positive epsilon there exists a finite or denumerable open cover of \(X \) by \(\mathcal{L} \)-complements, on each of which the oscillation of \(f \) is less than epsilon. In this note we show that countable \(\mathcal{L} \)-uniform continuity is a sufficient but not a necessary condition for extendibility to \(\eta(\mathcal{L}) \).

For definitions and a thorough discussion of the results cited above, the reader is referred to [1] and [3].

Theorem. Every countable \(\mathcal{L} \)-uniformly continuous function on \(X \) can be continuously extended to a real-valued function on \(\eta(\mathcal{L}) \).

Proof. If \(\mathcal{L} \) is a delta normal base for \(X \), let \(\mathcal{U} \) be the collection of all free \(\mathcal{L} \)-ultrafilters on \(X \) with the countable intersection property. Then \(\eta(\mathcal{L})=X\cup\mathcal{U} \) and the topology for \(\eta(\mathcal{L}) \) is that obtained by taking as a base for the closed sets the family of all sets \(A^* \) of the form \(A\cup\{A\in\mathcal{U}|A\in\mathcal{A}\} \) where \(A\in\mathcal{L} \).

If \(f \) is a countable \(\mathcal{L} \)-uniformly continuous function on \(X \), we define a function \(g \) which extends \(f \) from \(X \) to \(\eta(\mathcal{L}) \) as follows. If \(x\in X \) we let \(g(x)=f(x) \). If \(\mathcal{A}\in\mathcal{U} \) then the family \(S_{\mathcal{A}}=\{f(A):A\in\mathcal{A}\} \) has the finite intersection property and is therefore a subbase for the filter \(\mathcal{F}_{\mathcal{A}} \) consisting of all supersets of finite intersections of members of \(S_{\mathcal{A}} \). The filter \(\mathcal{F}_{\mathcal{A}} \) is a Cauchy filter and therefore converges uniquely to a real number which we call \(g(\mathcal{A}) \).

That \(g \) is continuous at each point of \(X \) is readily verified. It remains to show that \(g \) is continuous at each point \(\mathcal{B}\in\mathcal{U} \). Let the family \(\{X-C_i\}_{i=1}^\infty \) be a denumerable cover of \(X \) by \(\mathcal{L} \)-complements, on each member of which the oscillation of \(f \) is less than \(\epsilon/3 \) (we lose no generality in assuming that the cover of \(X \) is denumerable). We may suppose that \(C_i\in\mathcal{B} \) so that there is an element \(Q\in\mathcal{B} \) with \(Q\subseteq X-C_i \). We show that

\[
g(\eta(\mathcal{L}) - C_i^*)
g((X - C_i) \cup \{\mathcal{A}\in\mathcal{U}:\exists P\in\mathcal{A} \text{ with } P \subseteq X - C_i\}) \subseteq S(g(\mathcal{B}), \epsilon).
\]

Now \(g(\mathcal{B})\in\text{cl}_Rf(Q) \) and we choose \(q\in Q \) so that \(|g(\mathcal{B})-f(q)|<\epsilon/3 \). If \(y\in X-C_i \) we then have

\[
|g(\mathcal{B}) - g(y)| \leq |g(\mathcal{B})-f(q)| + |f(q) - g(y)| < \epsilon/3 + \epsilon/3 < \epsilon.
\]

It therefore follows that \(g(X-C_i)\subseteq S(g(\mathcal{B}), \epsilon) \). If \(\mathcal{A}\in\mathcal{U} \) and there is a \(P\in\mathcal{A} \) with \(D\subseteq X-C_i \), we choose a point \(p\in P \) satisfying \(|g(\mathcal{A})-f(p)|<\epsilon/3 \).
The points \(q \) and \(p \) are members of \(X - C_1 \) and so

\[
|g(\mathcal{F}) - g(\mathcal{D})| \leq |g(\mathcal{F}) - f(p)| + |f(p) - f(q)| + |f(q) - g(\mathcal{D})| \\
< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

Thus \(g \) is a continuous, real-valued function on \(\eta(\mathcal{D}) \).

In case \(\mathcal{D} \) is the collection of all zero-sets of a Tychonoff space \(X \), then \(\eta(\mathcal{D}) \) is precisely the Hewitt realcompactification of \(X \). By observing that a real-valued function on a topological space is continuous if and only if it is countable zero-set uniformly continuous, we have the following well-known result [4] as a

Corollary. *Every continuous, real-valued function on a Tychonoff space \(X \) can be continuously extended to a real-valued function on \(X \), the Hewitt realcompactification of \(X \).*

However, countable \(\mathcal{D} \)-uniform continuity is not a necessary condition for extendibility. To see this, we will make use of an example given by A. Steiner and E. Steiner in [5].

Let \(X = [0, 1] \) with the discrete topology, let \(\mathcal{F}_1 \) be the family of all closed subsets of \(X \) with respect to the usual topology on \([0, 1] \), and let \(\mathcal{F}_2 \) be the family of all subsets of \(X \) which are finite or whose complement is countable. Then the family \(\mathcal{D} \) of countable intersections of finite unions of members of \(\mathcal{F}_1 \cup \mathcal{F}_2 \) is a delta normal base. Furthermore, if \(\mathcal{A} \) is \(\mathcal{D} \)-ultrafilter, then \(\mathcal{A} \), being prime, contains a decreasing sequence of closed intervals whose lengths converge to 0; so if \(\mathcal{A} \) has the countable intersection property, then \(\mathcal{A} \) is fixed. Thus \(\eta(\mathcal{D}) = X \).

The \(\mathcal{D} \)-complements are all sets \(U \) of the form either:

(i) \(U \) is denumerable or finite;

(ii) \(U \) is open with respect to the usual topology on \([0, 1]\); or

(iii) \(U = V_1 \cup V_2 \) where \(V_1 \) has form (i) and \(V_2 \) form (ii). The function \(f: X \to \mathbb{R} \) equal to 1 on the rationals and 0 on the irrationals is certainly extendible to \(\eta(\mathcal{D}) = X \). However, if \(\{U_i\}_{i=1}^\infty \) is a cover of \(X \) by \(\mathcal{D} \)-complements, then at least one \(U_i \) has form (ii) or (iii). Hence \(f \) is not countable \(\mathcal{D} \)-uniformly continuous.

A delta normal base \(\mathcal{D} \) is a strong delta normal base if each \(A \in \mathcal{D} \) is a countable intersection of \(\mathcal{D} \)-complements. For such normal bases, \(\eta(\mathcal{D}) \) is always realcompact [2].

The normal base \(\mathcal{D} \) in the above example is easily seen to be strong delta. Hence, also in this situation, countable \(\mathcal{D} \)-uniform continuity is a sufficient but not a necessary condition for extendibility.
REFERENCES

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, COLLEGE AT GENESEO, GENESEO, NEW YORK 14454