An inequality of Turán type for Jacobi polynomials
HTML articles powered by AMS MathViewer
- by George Gasper
- Proc. Amer. Math. Soc. 32 (1972), 435-439
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289826-8
- PDF | Request permission
Abstract:
For Jacobi polynomials $P_n^{(\alpha ,\beta )}(x),\alpha ,\beta > - 1$, let \[ {R_n}(x) = \frac {{P_n^{(\alpha ,\beta )}(x)}}{{P_n^{(\alpha ,\beta )}(1)}},\quad {\Delta _n}(x) = R_n^2(x) - {R_{n - 1}}(x){R_{n + 1}}(x).\] We prove that \[ {\Delta _n}(x) \geqq \frac {{(\beta - \alpha )(1 - x)}}{{2(n + \alpha + 1)(n + \beta )}}R_n^2(x),\quad - 1 \leqq x \leqq 1,n \geqq 1,\] with equality only for $x = \pm 1$. This shows that the Turán inequality ${\Delta _n}(\alpha ) \geqq 0, - 1 \leqq x \leqq 1$, holds if and only if $\beta \geqq \alpha > - 1$.References
- Richard Askey, An inequality for the classical polynomials, Indag. Math. 32 (1970), 22–25. Nederl. Akad. Wetensch. Proc. Ser. A 73. MR 0257428, DOI 10.1016/S1385-7258(70)80003-8
- George Gasper, On the extension of Turán’s inequality to Jacobi polynomials, Duke Math. J. 38 (1971), 415–428. MR 276514
- S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1960/61), 1–157. MR 142972, DOI 10.1007/BF02786848
- B. N. Mukherjee and T. S. Nanjundiah, On an inequality relating to Laguerre and Hermite polynomials, Math. Student 19 (1951), 47–48. MR 45871
- Merrell L. Patrick, Some inequalities concerning Jacobi polynomials, SIAM J. Math. Anal. 2 (1971), 213–220. MR 288330, DOI 10.1137/0502018
- H. Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65–73. MR 63415, DOI 10.7146/math.scand.a-10396
- Gabor Szegő, An inequality for Jacobi polynomials, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 392–398. MR 0145122
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 32 (1972), 435-439
- MSC: Primary 33.40
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289826-8
- MathSciNet review: 0289826