Darboux’s theorem fails for weak symplectic forms
HTML articles powered by AMS MathViewer
- by J. Marsden
- Proc. Amer. Math. Soc. 32 (1972), 590-592
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293678-X
- PDF | Request permission
Abstract:
An example of a weak symplectic form on a Hilbert space for which Darboux’s theorem fails is given.References
- P. Chernoff and J. Marsden, Hamiltonian systems and quantum mechanics (in preparation).
- J. M. Cook, Complex Hilbertian structures on stable linear dynamical systems, J. Math. Mech. 16 (1966), 339–349. MR 0200737, DOI 10.1512/iumj.1967.16.16024
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- J. E. Marsden, Hamiltonian one parameter groups: A mathematical exposition of infinite dimensional Hamiltonian systems with applications in classical and quantum mechanics, Arch. Rational Mech. Anal. 28 (1967/68), 362–396. MR 226145, DOI 10.1007/BF00251662 I. Segal, Conjugacy to unitary groups within the infinite dimensional symplectic group, Technical Report, Argonne National Laboratory, Argonne, Illinois, 1966.
- Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329–346 (1971). MR 286137, DOI 10.1016/0001-8708(71)90020-X
- Alan Weinstein, Symplectic structures on Banach manifolds, Bull. Amer. Math. Soc. 75 (1969), 1040–1041. MR 245052, DOI 10.1090/S0002-9904-1969-12353-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 32 (1972), 590-592
- MSC: Primary 58B20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293678-X
- MathSciNet review: 0293678