DARBOUX'S THEOREM FAILS FOR WEAK SYMPLECTIC FORMS

J. MARSDEN

Abstract. An example of a weak symplectic form on a Hilbert space for which Darboux’s theorem fails is given.

Introduction. Let E be a Banach space and $B : E \times E \to \mathbb{R}$ a continuous bilinear form. Let $B^b : E \to E^*$ be defined by $B^b(e) \cdot f = B(e, f)$. Call B nondegenerate if B^b is an isomorphism and call B weakly nondegenerate if B^b is injective. For a symmetric bilinear form G on E, define the skew form \tilde{G} on $E \times E$ by

$$\tilde{G}((e_1, e_2), (f_1, f_2)) = G(f_2, e_1) - G(e_2, f_1).$$

It is easily seen that \tilde{G} is nondegenerate (resp. weakly nondegenerate) iff G is.

Now let M be a Banach manifold. A symplectic form (resp. weak symplectic form) on M is a smooth closed two form ω on M such that for each $p \in M$, ω as a bilinear form on $T_p M$ is nondegenerate (resp. weakly nondegenerate); here $T_p M$ is the tangent space at p. Using a technique of Moser, Weinstein ([6], [7]) showed that for each $p \in M$ there is a local chart about p on which ω is constant. This is a significant generalization and simplification of the classical theorem of Darboux. However, in many physical examples (the wave equation and fluid mechanics for instance) one deals with weak symplectic forms (see [1], [3], [4], [5]).

It is therefore interesting to know if Darboux’s theorem remains valid for weak symplectic forms. In this note we give a counterexample.

Symplectic forms induced by metrics. If M is a manifold, its cotangent bundle T^*M carries a canonical symplectic form ω. If M is modeled on a reflexive space the form is nondegenerate; otherwise it is only weakly nondegenerate. See [1], [4]. Now let $\langle \cdot, \cdot \rangle_p$ be a (smooth) weak riemannnian metric on M. Then it induces a map of TM to T^*M. The pull back Ω of ω to TM is called the form induced by the metric. It is a weak symplectic form.
form and in a chart U for M it is given by (using principal parts):

$$2\Omega_{u,e}((e_1, e_2), (e_3, e_4)) = Du(e, e_1) \cdot e_3 - Du(e, e_3) \cdot e_1 + \langle e_4, e_5 \rangle_{u} - \langle e_2, e_3 \rangle_{u}.$$

Here, Du denotes the derivative of the map $u \mapsto \langle e, e_1 \rangle_u$ with respect to u. In the finite dimensional case this corresponds to the classical formula

$$\Omega = \sum g_{ij} \, dq^i \wedge dq^j + \sum \frac{\partial g_{ij}}{\partial q^k} \, q^i \, dq^i \wedge dq^k.$$

Observe that in the finite dimensional case if we take new variables $q^1, \ldots, q^n, p_1, \ldots, p_n$ where $p_i = \sum g_{ij} q^j$, then (as is easy to check)

$$\Omega = \sum dq^i \wedge dp_i$$

which gives a chart in which Ω is constant.

The example. The following is a simplification of an earlier example. We thank the referee and Paul Chernoff for suggestions in this regard.

Let H be a real Hilbert space. Let $S: H \to H$ be a compact operator with range a dense, but proper subset of H, which is selfadjoint and positive: $\langle Sx, x \rangle > 0$ for $0 \neq x \in H$. For example if $H = L^2(R)$, we can let $S = (1 - \Delta)^{-1}$ where Δ is the Laplacian; the range of S is $H^2(R)$.

Since S is positive, -1 is clearly not an eigenvalue. Thus, by the Fredholm alternative, $aI + S$ is onto for any real scalar $a > 0$. Define on H the weak metric $g(x)(e, f) = \langle A_x e, f \rangle$ where $A_x = S + \|x\|^2 I$. Clearly g is smooth in x, and is an inner product. Let Ω be the weak symplectic form on $H \times H = H_1$ induced by g, as was discussed above.

PROPOSITION. There is no coordinate chart about $(0, 0) \in H_1$ on which Ω is constant.

PROOF. If there were such a chart, say $\phi: U \to H \times H$ where U is a neighborhood of $(0, 0)$, then in particular in this chart, the range F of Ω^b, as a map of H_1 to H^*_1, would be constant. Let $B_{x,y}$ be the derivative of ϕ at $(x, y) \in H_1$. Then we obtain that the range of $\Omega^b_{x,y}$ equals $B_{x,y}^* F$.

Now by the above formula for Ω, at the point $(x, 0)$ we have

$$2\Omega_{(x,0)}((e_1, e_2), (e_3, e_4)) = g_x(e_4, e_1) - g_x(e_2, e_3).$$

But by construction, for $x \neq 0$, g_x is a strong metric (i.e., A_x is onto for $x \neq 0$), so the range of $\Omega^b_{(x,0)}$ is all of H^*_1 for $x \neq 0$. Since $B_{x,y}$ is an isomorphism, this implies that $\Omega^b_{(0,0)}$ is onto all of H^*_1 as well. But g_0 is only a weak metric which is not onto as a map of H_1 to H^*_1. Hence $\Omega^b_{(0,0)}$ cannot be onto as well, a contradiction.

As was pointed out by the referee, the example even shows that Ω cannot be made constant on a continuous vector bundle chart on $T^2 M \to TM$, let alone by a manifold chart on TM.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Of course the essence of the example is that the range of Ω suddenly changed at one point i.e., the topology of the metric suddenly changed. This is perfectly compatible with the smoothness of Ω as it is only a weak symplectic form. This suggests a possible conjecture pointed out by Paul Chernoff: If Ω is such that the ranges of Ω_u are locally equivalent via an isomorphism, then Darboux's theorem should hold. This can be verified directly in case Ω comes from a metric which has locally equivalent ranges.

REFERENCES

5. I. Segal, Conjugacy to unitary groups within the infinite dimensional symplectic group, Technical Report, Argonne National Laboratory, Argonne, Illinois, 1966.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA

Current address: Department of Mathematics, University of California, Berkeley, California 94720