The converse to a theorem of Sharp on Gorenstein modules
HTML articles powered by AMS MathViewer
- by Idun Reiten
- Proc. Amer. Math. Soc. 32 (1972), 417-420
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296067-7
- PDF | Request permission
Abstract:
Let A be a commutative local Noetherian ring with identity of Krull dimension n, m its maximal ideal. Sharp has proved that if A is Cohen-Macauley and a homomorphic image of a Gorenstein local ring, then A has a Gorenstein module M with ${\dim _{A/m}}\operatorname {Ext}^n(A/m,M) = 1$. The aim of this note is to prove the converse to this theorem.References
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Tor H. Gulliksen, Massey operations and the Poincaré series of certain local rings, J. Algebra 22 (1972), 223–232. MR 306190, DOI 10.1016/0021-8693(72)90143-3
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Bruno J. Müller, On Morita duality, Canadian J. Math. 21 (1969), 1338–1347. MR 255597, DOI 10.4153/CJM-1969-147-7
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Rodney Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, Math. Z. 112 (1969), 340–356. MR 263800, DOI 10.1007/BF01110229
- Rodney Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117–139. MR 263801, DOI 10.1007/BF01109819 —, On Gorenstein modules over a complete Cohen-Macaulay ring, Oxford Quart. J. Math. Oxford Ser. (2) 22 (1971).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 32 (1972), 417-420
- MSC: Primary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296067-7
- MathSciNet review: 0296067