THE CONVERSE TO A THEOREM OF SHARP
ON GORENSTEIN MODULES

IDUN REITEN

Abstract. Let A be a commutative local Noetherian ring with identity of Krull dimension n, m its maximal ideal. Sharp has proved that if A is Cohen-Macaulay and a homomorphic image of a Gorenstein local ring, then A has a Gorenstein module M with $\dim_{A/m}\text{Ext}^n(A/m, M)=1$. The aim of this note is to prove the converse to this theorem.

Throughout this note A will denote a commutative local Noetherian ring with identity; m will denote its maximal ideal. The concept of a Gorenstein module was introduced by Sharp in [8].

(1) Definition. A nonzero finitely generated A-module M is called Gorenstein if the Cousin complex [7] provides a minimal injective resolution of M.

Sharp obtained various characterizations and properties of Gorenstein modules in [8]. In particular, he showed that for there to exist a Gorenstein A-module it is necessary that A be Cohen-Macaulay [8, (3.9)], and he showed that a Gorenstein A-module has zero annihilator [8, (4.12)]. It follows that (in the notation of [8]) if M is a Gorenstein module, then $\mu^i(m, M)=0$ if and only if $i\neq K$-$\text{dim } A$ [8, (3.11)]. We define the rank of the Gorenstein A-module M to be $\mu^n(m, M)$, where $n=K$-$\text{dim } A$. In [9] Sharp proved the following

(2) Theorem. If A is Cohen-Macaulay and a quotient of a Gorenstein local ring, then A has a Gorenstein module of rank 1 [9, (3.1)].

The aim of this note is to prove the following converse:

(3) Theorem. If A has a Gorenstein module M of rank 1, then A is a quotient of a Gorenstein local ring.
The notation will be the same as that in [8], with the following exception: if \(M \) is a nonzero finitely generated \(A \)-module, the notation \(\text{depth}_A M \) will be used instead of \(\text{codim}_A M \).

(4) The principle of idealization, introduced by Nagata (see [6, p. 2]) will be our tool. From the ring \(A \) and an \(A \)-module \(N \), we obtain a structure of a commutative ring with identity on the Cartesian product set \(A \times N \). Addition is "componentwise", and multiplication is given by
\[
(a_1, n_1) \cdot (a_2, n_2) = (a_1a_2, a_1n_2 + n_1a_2).
\]
\(A \) is then a quotient ring of \(A \times N \), for \(A \times N/0 \times N \cong A \). Since \(0 \times N \) is nilpotent, all prime ideals in \(A \times N \) are of the form \(p \times N \) for some prime ideal \(p \) of \(A \). Hence \(A \times N \) is also local, and \(K \)-dim \(A \times N = K \)-dim \(A \). Using Cohen’s theorem [6, (3.4)], we easily see that \(A \times N \) is Noetherian if and only if \(N \) is finitely generated.

The following proposition can be deduced from [5, (10)]; however, for the sake of completeness we include a direct proof.

(5) **Proposition.** Suppose the \(A \)-module \(N \) is nonzero. Then \(A \times N \) is self-injective if and only if \(A \) is complete and \(N \cong E(A/m) \) (i.e. the injective envelope of the residue field of \(A \)).

Proof. If \(A \) is complete and \(N = E(A/m) \), then by [2, p. 30], \(T = \text{Hom}_A(A \times N, N) \) is an injective \(A \times N \)-module, where \(A \times N \) is regarded as an \(A \)-module by means of the natural ring homomorphism \(A \rightarrow A \times N \). Now, by [4, (3.7)], the natural \(A \)-homomorphism \(A \rightarrow \text{Hom}_A(N, N) \) is an isomorphism. Consequently, there result \(A \)-module isomorphisms \(T \cong N \oplus \text{Hom}_A(N, N) \cong N \oplus A \), and a straightforward computation shows that the resulting isomorphism \(T \rightarrow A \times N \) is actually an \(A \times N \)-isomorphism.

Conversely, if \(A \times N \) is self-injective, then again by [2, p. 30], since \(A \times N/0 \times N \cong A \), \(\text{Hom}_A(A \times N/0 \times N, A \times N) \cong \text{Ann}_A N \times N \) is an injective \(A \)-module. Since \(A \) is local and \(N \neq 0 \), \(\text{Ann}_A N = 0 \). Furthermore the natural homomorphism \(A \rightarrow \text{Hom}_A(N, N) \) is surjective. For let \(f : N \rightarrow N \) be an \(A \)-homomorphism. The mapping \(g : 0 \times N \rightarrow A \times N \) given by \((0, n) \mapsto (0, f(n)) \) is an \(A \times N \)-homomorphism; hence, since \(A \times N \) is self-injective, \(g \) can be extended to an \(A \times N \)-homomorphism \(g' : A \times N \rightarrow A \times N \). It follows that \(f \) is just multiplication by some element \(a \in A \). Hence, since \(\text{Ann}_A N = (0) \), \(N \) is an injective \(A \)-module for which the natural homomorphism \(A \rightarrow \text{Hom}_A(N, N) \) is an isomorphism. Using [4, (3.7)] and the now established fact that the endomorphism ring of \(N \) is local, we conclude that \(N \cong E(A/m) \) and \(A \) is complete.

(6) **Corollary.** Suppose \(A \) is an Artin local ring, \(N \neq (0) \) an \(A \)-module. \(A \times N \) is self-injective if and only if \(N \cong E(A/m) \).

We remark that a direct proof of the fact that if \(A \) is an Artin local ring, then \(A \times E(A/m) \) is self-injective appears in [3, p. 14].
Theorem. Suppose A is a Cohen-Macaulay ring, having Krull dimension n, and M a nonzero finitely generated A-module. Then $A \times M$ is Gorenstein if M is a Gorenstein module of rank 1.

Proof. Assume first that M is a Gorenstein module of rank 1. Then by [8, (3.11)], $\text{depth}_AM=\text{depth }A=n$; hence we can find (a_1, \cdots, a_n) an A-sequence and M-sequence (see [8, (1.7)]). Then an easy computation shows that $(a_1, 0), \cdots, (a_n, 0)$ is an $A \times M$-sequence, and

$$A \times M/((a_1, 0), \cdots, (a_n, 0)) \cong A/(a_1, \cdots, a_n) \times M/(a_1, \cdots, a_n)M = A' \times M'.$$

Since M is Gorenstein of rank 1, and $\mu_{A'}^{n+i}(m, M)=\mu_{A'}^i(m', M')$ for all $i \geq 0$ (see [1, (2.6)]), we find that M' is a Gorenstein A'-module of rank 1. Hence $M' \cong E(A'/m')$, since $K\text{-dim }A'=0$ (see [8, (3.11)]). Now $A' \times M'$ is self-injective by (6), hence, again using [1, (2.6)], $A \times M$ is a Gorenstein ring.

Now assume conversely that $A \times M$ is Gorenstein. Let $k=\text{depth}_AM \leq n$. Let (a_1, \cdots, a_k) be an A-sequence and M-sequence, and as before consider $A \times M/((a_1, 0), \cdots, (a_k, 0))=A' \times M'$. If $\text{depth }A' \times M'=n-k>0$, choose an element (a', m') which is $A' \times M'$-regular. Then it is easily seen that a' must be M'-regular, a contradiction to the fact that $\text{depth}_AM=k$. Hence $\text{depth }A' \times M'=0$, so that $n=k$; and $A' \times M'$ is self-injective. Then (6) implies that $M'=E(A'/m')$; hence M is a Gorenstein module of rank 1.

Corollary. If A has a Gorenstein module M of rank 1, then A is a quotient of a Gorenstein local ring.

Sharp has informed me that he has obtained the following extension of (2) for a commutative Noetherian ring B: If B is Cohen-Macaulay and is a quotient of a Gorenstein ring, then B has a Gorenstein module M for which $\mu_{B''}(p, M)=1$ for all $p \in \text{Spec }B$. The converse of this result can be obtained from (7) by straightforward use of localization. Combining the results of these investigations, we obtain the following

Corollary. Suppose B is a commutative Noetherian ring. Then there exists a Gorenstein B-module M having the property that $\mu_{B''}(p, M)=1$ for all $p \in \text{Spec }B$ if and only if B is a Cohen-Macaulay ring which can be expressed as a homomorphic image of a Gorenstein (commutative Noetherian) ring.

2 This result has been obtained independently by H. B. Foxby of Copenhagen.
REFERENCES

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Current address: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154