AN ALGEBRAIC CHARACTERIZATION OF DIMENSION

M. J. CANFELL

Abstract. The purpose of this paper is to translate the condition defining Lebesgue covering dimension of a topological space X into a condition on $C(X)$, the ring of continuous real-valued functions on X.

We take the definition of topological dimension given in [2, p. 243]. The definition in [2] is given for completely regular Hausdorff spaces, but applies equally well to arbitrary spaces. Characterizations of $\dim X$ in terms of $C(X)$ have been given by Katětov and by the author [1]. For an exposition of Katětov's work the reader is referred to [2, Chapter 16].

Let R be a commutative ring with identity. By a basis in R we mean a finite set of elements which generate R. The order of a basis is the largest integer n for which there exist $n+1$ members of the basis with nonzero product.

There is a close relation between bases in $C(X)$ and basic covers of X [2, p. 243]. For each basis $\{f_i\}_{i \in I}$ of $C(X)$ we associate the basic cover $\{U_i\}_{i \in I}$ of X, where U_i is defined by $U_i = \{x : f_i(x) \not= 0\}$. Conversely, for each basic cover $\{U_i\}_{i \in I}$ of X, we may associate a basis $\{f_i\}_{i \in I}$ of $C(X)$ where f_i is chosen to satisfy $U_i = \{x : f_i(x) \not= 0\}$. Since $U_{i_1} \cap \cdots \cap U_{i_n} = \emptyset$ if and only if $f_{i_1} \cdots f_{i_n} = 0$, it follows that the order of the basic cover $\{U_i\}_{i \in I}$ is the same as the order of the basis $\{f_i\}_{i \in I}$.

If now $\{a_i\}_{i \in I}$ and $\{b_j\}_{j \in J}$ are bases in the ring R, we say that $\{b_j\}_{j \in J}$ is a refinement of $\{a_i\}_{i \in I}$ if for each $j \in J$ there is an $i \in I$ such that b_j is a multiple of a_i. The dimension of R, denoted by $d(R)$, is here defined to be the least cardinal m such that every basis of R has a refinement of order at most m.

Theorem. If X is an arbitrary topological space, then $\dim X = d(C(X))$.

Proof. Suppose $d(C(X)) \leq n$. Let $\{U_i\}_{i \in I}$ be a basic cover of X and let $\{f_i\}_{i \in I}$ be an associated basis in $C(X)$. By hypothesis, this basis has a refinement $\{g_j\}_{j \in J}$ of order at most n. The basic cover associated with $\{g_j\}_{j \in J}$ is then a refinement of $\{U_i\}_{i \in I}$ of order at most n. Thus $\dim X \leq n$.

Received by the editors July 20, 1971.

AMS 1969 subject classifications. Primary 5470.

Key words and phrases. Basic covers, topological dimension.
Suppose now that \(\text{dim } X \leq n \). Let \(\{f_i\}_{i \in I} \) be a basis in \(C(X) \) and let \(\{U_i\}_{i \in I} \) be the associated basic cover of \(X \). By hypothesis, this cover has a basic refinement \(\{V_j\}_{j \in J} \) of order at most \(n \). By Theorem 16.6 of [2], there are zero-sets \(Z_j \) which cover \(X \) and for which \(Z_j \subseteq V_j \) for \(j \in J \). Let \(k_j \in C(X) \) satisfy the following: \(k_j(x) = 0 \) if \(x \notin V_j \) and \(k_j(x) = 1 \) if \(x \in Z_j \). For each \(j \in J \), choose \(i(j) \in I \) such that \(V_j \subseteq U_{i(j)} \), and let \(g_j = k_j f_{i(j)} \). From the construction of \(g_j \) it follows that

\[
Z_j \subseteq \{x: g_j(x) \neq 0\} \subseteq V_j.
\]

Since the \(Z_j \)'s cover \(X \), it follows that \(\{g_j\}_{j \in J} \) is a basis of \(C(X) \), which clearly refines \(\{f_i\}_{i \in I} \). Since \(\{V_j\}_{j \in J} \) has order at most \(n \), the family of sets \(\{x: g_j(x) \neq 0\} \) also has order at most \(n \), whence the basis \(\{g_j\}_{j \in J} \) has order at most \(n \). Thus \(d(C(X)) \leq n \) and the proof is complete.

REFERENCES
