UNITARY GROUPS AND COMMUTATORS

ROBERT M. KAUFFMAN

Abstract. If H is a possibly unbounded selfadjoint operator and A is a closed operator in a Hilbert space, the relation $(U_t^{-1}AU_t)f = iU_t^{-1}(AH-HA)U_t f$ can be shown to hold under relatively reasonable hypotheses on A and f, where $U_t = e^{itH}$. This relation can then be used to relate properties of the commutator $AH-HA$ to properties of A and H.

In quantum mechanics, a state f at time $t=0$ evolves at time t_0 into the state $U_{t_0}f$, where $U_t = e^{itH}$ and H is the quantum mechanical Hamiltonian operator for the system. This means that for the observable A, the expectation of A in the state $U_{t_0}f$ is given by $(AU_{t_0}, U_{t_0}f)$. Equivalently, we may regard the state as fixed and the observable A as evolving with time. Thus at time t the new observable A_t is $U_t^{-1}AU_t$. To analyze this evolution further, an obvious step is to differentiate with respect to t, which yields the formal relation $A'_t = iU^{-1}_t(AH-HA)U_t$. If $i(AH-HA)$ is positive definite, for example, this means that expectations are increasing.

Thus one is naturally led to study the commutator $AH-HA$. We shall use the group U_t as an essential tool in our study, and the hypotheses of our theorems will explicitly involve U_t. This seems justified physically, since U_t has direct physical significance.

A quite different method of relating A, H and $AH-HA$ is given in the interesting book by Putnam [3].

In what follows, we let $U_t = e^{itH}$, and H be a selfadjoint operator in a Hilbert space h. A will be a closed operator in h. Take domain H^n to mean the intersection of the domains of all H^n, where n ranges over the positive integers. Take H^0 to be the identity operator.

We first state and prove conditions under which the relationship $(U_t^{-1}AU_t)f = iU_t^{-1}(AH-HA)U_t f$ holds.

Theorem 1. Let n be a nonnegative integer, and let $m > n$ be a positive integer or ∞. Suppose that domain A contains domain H^n, and that A takes
domain H^n into domain H. Then, for any f in domain H^n, $(U^{-1}_t A U_j f)'$
exists in the strong sense and is equal to $i[U^{-1}_t (AH - HA) U_j] f$.

Remark. If AH and HA were both defined on domain H^i, for some
nonnegative integer i, the hypotheses of Theorem 1 would hold, taking
$n = i$, and $m = i + 1$.

Proof. We prove the theorem by taking difference quotients, after
first observing that U_t takes domain H^i onto itself, for any i which is
either a nonnegative integer or ∞.

Now

$$U^{\Delta t}_t A U^{\Delta t}_t f - U^{-1}_t A U_{j} f = U^{-1}_t [U^{\Delta t}_t A U_{\Delta t} - A] U_t f.$$
Calling $U_t f = g$, we note that g is in domain H^n. But

$$(1/\Delta t)[U^{\Delta t}_t A U_{\Delta t} - A] g$$

$$= (1/\Delta t)(U_{\Delta t} - I)Ag + (U_{\Delta t} A(U_{\Delta t} - I)g)(1/\Delta t).$$

As Δt approaches zero, the first term goes to $-iHAg$, since Ag is in domain H by hypothesis. The second term is a little harder to analyze.

First, we note that A defines a closed, and therefore continuous linear
transformation of B into h, where B is the Banach space created by giving
domain H^n the graph norm associated with H^n.

However $(U_{\Delta t} - I)g/\Delta t$ approaches iHg in B as Δt approaches zero,
since g is in domain H^{n+1}. Thus $A(U_{\Delta t} - I)g/\Delta t$ converges to $iAHg$ in h.

But, finally, from strong continuity of U_t and the fact that $\|U_t\| = 1$
for all t, it follows that $U_{-\Delta t} A(U_{\Delta t} - I)g/\Delta t$ approaches $iAHg$ as Δt
approaches zero.

Collecting what we have proved, we see that $(1/\Delta t)[U_{\Delta t} A U_{\Delta t} - A] g$
approaches $i(AH - HA)g$ as Δt approaches zero. From continuity of U_t it
follows that $(1/\Delta t)U_{-\Delta t} (U_{\Delta t} A U_{\Delta t} - A) U_t f$ approaches $i(AH - HA)U_t f$
in h as Δt approaches zero. This completes the proof of Theorem 1.

Corollary 1. Under the hypotheses of Theorem 1, it cannot happen
that $(i(AH - HA) U_t f, U_t f) > C \|U_t f\|^2$ for any $C > 0$, and neither can it
happen that $(i(AH - HA) U_t f, U_t f) < -C \|U_t f\|^2$ for all t in any infinite
interval.

Proof. By the closed graph theorem, and the fact that in the graph
norm generated by H on domain H, the norm of $U_t f$ is the same as that
of f, it follows that $\|AU_t f\|$ remains bounded. Therefore so does
$(AU_t f, U_t f)$. By Theorem 1, the proof is completed.

Definition. An operator A is said to be local with respect to $U_t f$
if $U_t f$ is contained in domain A for all t, and $AU_t f$ approaches zero as t
approaches $\pm\infty$.
It might at first appear that it is hard to show that an operator A is local with respect to $U_t f$. This is not the case, however, for many types of selfadjoint operators H which are important in applications. A few remarks on this problem seem in order.

First, if H is a selfadjoint operator in L^2, and \mathcal{A} is an element of L^2, then recall that \mathcal{A} is said to be absolutely continuous with respect to H if the real valued measure $m_\mathcal{A}(S) = \|P(S)f\|^2$ is absolutely continuous with respect to Lebesgue measure on R. Here S is any borel set in R, and $P(S)$ is the projection associated with S by the spectral measure associated with H. The set of all such \mathcal{A} forms a reducing subspace of H, and the restriction of H to this subspace forms a selfadjoint operator $H_\mathcal{A}$. U_t takes this subspace into itself. If $H_\mathcal{A} = H$, H is said to be absolutely continuous.

Now, if \mathcal{A} is absolutely continuous with respect to H, H is a selfadjoint ordinary differential operator and $\mathcal{A} = L^2(R)$. It follows by an argument in Lax and Phillips [2, p. 147], that $\|C_\mathcal{A} U_t f\|$ approaches 0 as t approaches $\pm \infty$, where $C_\mathcal{A}$ is the characteristic function of any compact interval Δ. Here H must be assumed to have order one or greater. Thus if \mathcal{A} is a bounded operator, and \mathcal{A} is the limit in operator norm of a sequence of operators A_n defined by $A_n f = AC_{\mathcal{A}_n} f$ for a sequence of compact intervals Δ_n, it follows that \mathcal{A} is local with respect to $U_t f$, provided $U_t = e^{iH t}$, H is a selfadjoint ordinary differential operator, and \mathcal{A} is absolutely continuous with respect to H. An example of such an \mathcal{A} is multiplication by a C_0 function.

It may be shown (see Kato [1]) that many ordinary differential operators have nontrivial absolutely continuous parts, and that therefore such vectors \mathcal{A} may be found. Further, similar considerations can be made to apply to the case where \mathcal{A} is an ordinary differential operator with C_0 coefficients, provided H is a selfadjoint ordinary differential operator in $L^2(R)$ with bounded coefficients and nontrivial absolutely continuous part and \mathcal{A} is of order less than or equal to that of H.

Another way of showing locality, which also applies to differential operators is contained in the following theorem.

Theorem 2. Let H be absolutely continuous. Let \mathcal{A} be H-compact. Then \mathcal{A} is local with respect to $U_t f$ for all f in domain H.

Remark. Recall that \mathcal{A} is said to be H-compact if domain \mathcal{A} contains domain H, and \mathcal{A} is a compact operator from domain H into h, where domain H is equipped with the graph norm from H.

Proof. Since H is absolutely continuous, then by the Riemann-Lebesgue lemma $(U_t f, g)$, which equals $(\int_{-\infty}^{\infty} e^{iH t} dP f, g)$, approaches 0 when t approaches $\pm \infty$ for all f and g in h. Now suppose \mathcal{A} is not local.
with respect to some \(f \) in domain \(H \). Then there is a sequence \(t_n \) approaching, say, \(+\infty \) such that \(\|AU_{t_n}f\| > C \) for some \(C > 0 \). Since \(A \) is \(H \)-compact, it follows that, for some subsequence \(t_{n(i)} \), \(AU_{t_{n(i)}}f \) approaches \(g \), with \(\|g\| \geq C \).

Let \(U_{t_{n(i)}}f = f_i \). Let \(\|Af_i\| \leq M \). Select \(g_1 \) in domain \(A^* \) such that \(\|g_1 - g\| \leq C^2 / 2M \). Then \(\|(Af_i, g_1) - (Af_i, g)\| \leq M \|g_1 - g\| \leq C^2 / 2 \). Therefore, when \(j \) is large enough, \(\|(Af_j, A^*g_1)\| \leq C^2 / 4 \). Therefore \(\|(Af_j, A^*g_1)\| \leq C^2 / 4 \), which contradicts the fact \(f_j \) converges weakly to 0. This completes the proof.

We now use the hypothesis of locality with respect to \(U_{t_1}f \).

Theorem 3. Suppose that \(AH^2 \), \(HAH \) and \(H^2A \) are all defined on domain \(H^{n-1} \) for some positive integer \(n \geq 3 \). Suppose \(A \) is local with respect to \(U_{t_1}f \), where \(f \) is in domain \(H^n \), and suppose there is a dense subspace \(S \) of \(h \) on which \(A^*H^2 \), \(HA^*H \) and \(H^2A^* \) are defined. Then \(AH - HA \) is local with respect to \(U_{t_1}f \).

Remark. If \(A \) is symmetric, the last hypothesis is obviously redundant. Also if \(A \) and \(H \) are ordinary differential operators, \(C^2 \) will usually be such a subspace \(S \).

Proof. \((U_{t_1}^{-1}AU_{t_1}f)^* = U_{t_1}^{-1}(AH^2 - 2HAH + H^2A)U_{t_1}f \) as may be seen using Theorem 1. It is of course necessary to show that the operator \(AH - HA \), when restricted to domain \(H^{n-1} \), has a closed extension. However, an operator has a closed extension if and only if its adjoint is densely defined, so our last hypothesis takes care of this possibility.

Now if \(T \) is the operator \(AH^2 - 2HAH + H^2A \), restricted to domain \(H^n \), then \(T \) has a closed extension. Therefore, giving domain \(H^n \) the graph norm from \(H^n \), and letting \(\hat{T} \) denote the operator induced by \(T \) from \(H^n \) to \(H^n \), we see that \(\hat{T} \) is continuous by the closed graph theorem.

But since \(H^nU_{t_1}f = U_{t_1}H^n f \), it follows that all \(U_{t_1}f \) have the same norm as \(f \) in the graph norm on domain \(H^n \). Therefore the set of all \(U_{t_1}f \) is a bounded set in the Banach space domain \(H^n \), so that the set of \(TU_{t_1}f \) is a bounded set in \(h \). Therefore the set of all \((U_{t_1}^{-1}AU_{t_1}f)^* \) is a bounded set in \(h \), as \(t \) ranges over the whole real line.

Let \(f_t \) be \(U_{t_1}^{-1}AU_{t_1}f \). We need to show that \(f_t \) approaches zero in norm, as \(t \) approaches \(\pm \infty \), in order to prove the theorem. Let \(g(t) = (f_t, f_t) \).

Then \(g'(t) = (f'_{t}, f_t) + (f_t, f'_{t}) \). Also, \(g''(t) = (f''_{t}, f_t) + 2(f'_t, f'_t) + (f_t, f''_{t}) \). Since \(f''_{t} \) is bounded, and \(f_t \) goes to zero as \(t \) approaches \(\pm \infty \), it follows that \((f''_{t}, f_t) \) also approaches zero.

To show that \((f''_{t}, f_t) \) approaches 0, we first observe that

\[f_t = iU_{t_1}^{-1}(AH - HA)U_{t_1}f. \]
which, once again, by the closed graph theorem, remains bounded as t approaches $\pm \infty$. Thus (f'_n, f'_n), which equals $(f'_n, f''_n) + (f'_n, f''_n)$, is a bounded real valued function of t. If there were a sequence t_n approaching, say, $+\infty$ such that $(f'_n, f'_n) > \varepsilon$, then there would have to be a δ such that (f'_n, f'_n) remained $\geq \varepsilon/2$ on $[t_n - \delta, t_n + \delta]$ for all n, by the mean value theorem. Thus there would be an N such that g'' would be greater than $\varepsilon/4$ on the interval $[t_n - \delta, t_n + \delta]$ for all $n \geq N$. However, since f'_n approaches zero and f'_n remains bounded as t approaches infinity, it is clear that $g'(t)$ must approach 0. This contradicts the fact we just discovered about g''. The theorem is proved.

Corollary 2. Under the hypotheses of Theorem 3, it cannot happen that $AH - HA$ has a bounded inverse when restricted to the linear span of the U_tf.

Corollary 3. Let f be as in Theorem 3, and suppose f is perpendicular to the eigenvectors of H. Let T be the operator formed by restricting $AH - HA$ to the linear span of the U_tf, and T_1 be the closure of the graph of T in the product space $h \times h$. Then T_1 cannot be a linear operator with closed range and finite dimensional null space.

Proof. There is a sequence t_n approaching infinity such that U_tf approaches 0 weakly in h. (See Lax and Phillips [2, p. 145].) But $(AH - HA)U_tf$ approaches zero by Theorem 3.

Let S be the closed linear span of the U_tf. If T_1 is a closed operator defined on a dense subspace of S, and K is its null space, and T_1 has closed range, then by dividing out K and using the closed graph theorem we see that the distance from U_tf to K approaches zero. From this fact, and the fact that K is finite dimensional, it follows that a subsequence of U_tf converges to a point g of K, with $\|g\| = \|f\|$. This contradicts the weak convergence of U_tf to zero.

Corollary 4. Let H be absolutely continuous, and A be H-compact and symmetric. Further, suppose that for some positive integer n, AH^n, HAH and H^nA are defined on domain H^n. Then the restriction of $AH - HA$ to domain H^n can have no extension to a closed operator in h with closed range and finite dimensional null space.

Proof. Combine Theorem 2 and Corollary 3.

References

Department of Mathematics, Western Washington State College, Bellingham, Washington 98225