ISOTOPIC CLOSED NONCONJUGATE BRAIDS

K. MURASUGI AND R. S. D. THOMAS

Abstract. J. S. Birman has conjectured that, when a knot is represented by a closed braid on a minimal number n of strands, the conjugacy class of the braid exhausts the set of braids in B_n closing to define the knot. Counterexamples are given to disprove the conjecture, even when it is weakened to refer only to oriented knots.

1. Introduction. It is easy to see that a knot represented by the closure of a braid in the n-strand braid group B_n can also be represented by the closure of a braid in B_m for each $m > n$. Having made the above observation, J. S. Birman conjectured [1] that if A is a knot and n is the smallest integer such that there is a braid $a \in B_n$ that closes to define the knot A, then the conjugacy class of a in B_n gives the totality of braids in B_n that close to define knots of the same isotopy type as a. Leading to this conjecture is a proof that turning over a braid leads to a conjugate braid. Let B_n be presented thus:

$$\langle \sigma_1, \sigma_2, \cdots, \sigma_{n-1}; \sigma_i\sigma_j = \sigma_j\sigma_i \text{ if } |i - j| \geq 2, \sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1} \rangle,$$

then the turning-over operation \triangle can be described thus

$$\sigma_1^a \sigma_2^a \cdots \sigma_k^a \xrightarrow{\triangle} \sigma_{n-1}^a \sigma_{n-2}^a \cdots \sigma_{n-k}^a.$$

Since the conjecture is trivially true for $n=2$, we consider only the case $n \geq 3$. We show by Counterexample 1 that a second operation, turning upside down, may not lead to a conjugate braid. We define the second operation thus:

$$\sigma_1^a \sigma_2^a \cdots \sigma_k^a \xrightarrow{\triangledown} \sigma_{n-k}^a \sigma_{n-2}^a \cdots \sigma_{n-1}^a \sigma_{n-k}^a.$$

It is obvious that if a braid a closes to define a knot A, then both the braids $\triangle a$ and $\triangledown a$ close to define a knot of the isotopy type of A. The original conjecture must therefore be weakened to concern only oriented knots.

We show by Counterexample 2 that the weakened conjecture admits an infinite class of counterexamples within B_n for each $n \geq 4$.

Received by the editors June 15, 1971.

Key words and phrases. Braid group, closed braid, conjugate braid, knot, composite knot, oriented knot.

1 Research was supported by the National Research Council grants A4034 and A7914.

137
2. **Counterexample 1.** The knot 6_3 in Reidemeister's table can be represented by the closure of braids in B_3 but not in B_2. We consider the braid $\gamma = \sigma_1^{-1} \sigma_2^{a} \sigma_1^{-1} \sigma_2 \in B_3$, which closes to define 6_3. And we show that $\nabla \gamma = \sigma_1 \sigma_2^{-2} \sigma_1 \sigma_2^{-1} \in B_2$ is not conjugate to γ. When γ and $\nabla \gamma$ are expressed within the presentation of B_3 as $\langle a, b; a^2 = b^2 \rangle$, where $a = \sigma_1 \sigma_2$ and $b = \sigma_1 \sigma_2 \sigma_1$, they can be written thus:

$$\gamma = \left(baba_2bababa_2 \right) a^{-18}, \quad \nabla \gamma = \left(a^2 bababa_2bababa_2 \right) a^{-18}.$$

Since the conjugacy classes in this normal form are just the cyclic permutations of the bracketed factors, the classes of γ and $\nabla \gamma$ are apparently distinct.

3. **Counterexample 2.** It will be observed that the construction of the counterexamples to the weakened conjecture depends on the oriented knots' being both composite and not representable by the closure of a braid of B_3. Within B_4, let $\alpha = \sigma_1^m \sigma_2 \sigma_1^n$ and $\beta = \sigma_1^m \sigma_2 \sigma_1^n$ with $m, \, n, \, p$ all different, odd, and at least three in absolute value. Let $A, \, B$ be the oriented knots defined by orienting from top to bottom and closing α and β respectively. Both A and B can be formed by the composition of oriented torus knots of types $(2, \, m), \, (2, \, n), \, (2, \, p)$. By the commutativity of the composition of oriented knots, A and B are isotopic: we show that neither can be represented as the closure of an element of B_2 or B_3 and secondly that α and β are not conjugate in B_4.

Suppose that A is represented in B_n. Then the group of A is generated by at most n Wirtinger generators with $n-1$ defining relations. Therefore the length of the chain of ideals of A is at most $n-1$. But the length of the chain of ideals of a composite knot is the sum of the lengths of the chains of ideals of its components by [2]. And the length of the chain of ideals of each of the three components of A is one. Therefore $3 \leq n - 1$ which implies that $n \geq 4$. The same argument holds for B.

To show that $\sigma_1^m \sigma_2^a \sigma_1^b$ is not conjugate to $\sigma_1^m \sigma_2^a \sigma_1^n$ in B_4, let N be the normal closure of $\sigma_1 \sigma_2^{-1}$ in B_4 and let $\phi: B_4 \to B_4/N \cong B_3$ be the natural homomorphism. Then

$$\phi(\sigma_1^m \sigma_2^a \sigma_1^n) = \sigma_1^m \sigma_2^a \sigma_1^n \quad \text{and} \quad \phi(\sigma_1^m \sigma_2^a \sigma_1^n) = \sigma_1^m \sigma_2^a \sigma_1^n.$$

But $\sigma_1^m \sigma_2^n$ and $\sigma_1^m \sigma_2^n$ are not conjugate in B_4 since when they are closed they do not define isotopic links but rather the torus knots of type $(2, \, n)$ and $(2, \, p)$ respectively linked to an unknotted circle. Therefore α is not conjugate to β in B_4.

The existence of a similar infinite family of counterexamples in B_n for each larger n is obvious. These examples further stress the need to treat

2 For the definition, see [2, p. 259].
oriented rather than unoriented knots since \(\alpha \) can be used in place of \(\gamma \) in §2.

REFERENCES

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada

Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada

Current address (Murasugi): Department of Mathematics, Princeton University, Princeton, New Jersey 08540