A note on $K$-commutativity of matrices
HTML articles powered by AMS MathViewer
- by Edmond Dale Dixon and Nancy Wong
- Proc. Amer. Math. Soc. 33 (1972), 33-38
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292864-2
- PDF | Request permission
Abstract:
It is the purpose of this paper to find in terms of parameters the most general matrix X which is K-commutative with respect to a given matrix A. The proofs will yield a method of rational construction for such a matrix X.References
- W. V. Parker, The matrix equation $AX=XB$, Duke Math. J. 17 (1950), 43–51. MR 33269, DOI 10.1215/S0012-7094-50-01705-4
- W. V. Parker, Matrices and polynomials, Amer. Math. Monthly 61 (1954), 182–183. MR 60461, DOI 10.2307/2307220
- William Vann Parker and James Clifton Eaves, Matrices, Ronald Press Co., New York, 1960. MR 0107650
- William E. Roth, On $k$-commutative matrices, Trans. Amer. Math. Soc. 39 (1936), no. 3, 483–495. MR 1501859, DOI 10.1090/S0002-9947-1936-1501859-2
- Edmond Dale Dixon, Matric polynomials which are higher commutators, Pacific J. Math. 32 (1970), 55–63. MR 254072, DOI 10.2140/pjm.1970.32.55
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 33 (1972), 33-38
- MSC: Primary 15A27
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292864-2
- MathSciNet review: 0292864