An “extra” law for characterizing Moufang loops
HTML articles powered by AMS MathViewer
- by Orin Chein and D. A. Robinson
- Proc. Amer. Math. Soc. 33 (1972), 29-32
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292987-8
- PDF | Request permission
Abstract:
Let $(G, \cdot )$ be any loop and let $\lambda , \delta , \alpha$ be mappings of G into G so that $x\lambda = x \cdot x\delta = x(x\alpha \cdot x)$ for all $x \in G$. It is shown that the following conditions are equivalent: (a) $(xy \cdot z)x\alpha = x(y(z \cdot x\alpha ))$ for all $x,y,z \in G$, (b) $(G, \cdot )$ is Moufang and $x\delta$ is in the nucleus of $(G, \cdot )$ for all $x \in G$, (c) $(xy)(z \cdot x\lambda ) = (x \cdot yz)x\lambda$ for all $x,y,z \in G$. In particular, a loop $(G, \cdot )$ is extra in that $(xy \cdot z)x = x(y \cdot zx)$ for all $x,y,z \in G$ if and only if it satisfies the ${M_3}$-law in that $(xy)(z \cdot {x^3}) = (x \cdot yz){x^3}$ for all $x,y,z \in G$.References
- Richard Hubert Bruck, A survey of binary systems, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0093552, DOI 10.1007/978-3-662-35338-7
- Orin Chein and Hala O. Pflugfelder, On maps $x\rightarrow x^{n}$ and the isotopy-isomorphy property of Moufang loops, Aequationes Math. 6 (1971), 157–161. MR 292986, DOI 10.1007/BF01819747
- Ferenc Fenyves, Extra loops. I, Publ. Math. Debrecen 15 (1968), 235–238. MR 237695, DOI 10.5486/pmd.1968.15.1-4.27
- Ferenc Fenyves, Extra loops. II. On loops with identities of Bol-Moufang type, Publ. Math. Debrecen 16 (1969), 187–192. MR 262409, DOI 10.5486/pmd.1969.16.1-4.26
- Hala Orlik-Pflugfelder, A special class of Moufang loops, Proc. Amer. Math. Soc. 26 (1970), 583–586. MR 265498, DOI 10.1090/S0002-9939-1970-0265498-1
- D. A. Robinson, Holomorphy theory of extra loops, Publ. Math. Debrecen 18 (1971), 59–64 (1972). MR 308312, DOI 10.5486/pmd.1971.18.1-4.07
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 33 (1972), 29-32
- MSC: Primary 20N05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292987-8
- MathSciNet review: 0292987