A BAIRE SPACE EXTENSION

R. A. McCOY

Abstract. A characterization of Baire spaces is given. Using this characterization, it is shown that every topological space is a dense subspace of some compact Baire space.

If X and Y are topological spaces and if X is a dense subspace of Y, then Y will be called an extension of X. If Y has property P, then it will be called a P extension of X. Many people have investigated, for various nonhereditary properties P, the classes of spaces having P extensions. For example, every Tychonoff space has a compact, Hausdorff extension, and every Hausdorff space has an H-closed extension [3]. An H-closed (or absolutely closed) space is a Hausdorff space such that every open filter base has a cluster point. Since a compact Hausdorff space is a Baire space, then every Tychonoff space has a Tychonoff, Baire space extension. A Baire space is a space such that every nonempty open subset is of second category in the space. Herrlich gave an example in [2] of an H-closed space (in fact a minimal Hausdorff space) which is of first category in itself and hence not a Baire space. Therefore there exist Hausdorff spaces which have no Hausdorff Baire space extensions. In the Corollary to Theorem 3, we see that every topological space has a compact Baire space extension.

We shall use the following characterization of Baire spaces, which is similar to a characterization given in [1] of spaces of second category in themselves.

Theorem 1. X is a Baire space if and only if every countable point finite open cover of X is locally finite at a dense set of points.

Proof. Suppose that X is a Baire space. Let $\mathcal{U}=\{U_i\}$ be a countable point finite open cover of X, and let U be a nonempty open subset of X. Then U is of second category in X. Assume that \mathcal{U} is not locally finite at any point of U. Let $V=\{V_i\}$, where each $V_i=U_i\cap U$. Then each open set in U intersects infinitely many members of V. Let $\mathcal{N}=\{N_i|\mathcal{N}$$\subseteq\omega$ and $\omega \setminus \mathcal{N}$ is finite$\}$, which is countable. Let $\{N_i|i\in\omega\}$ be a well ordering of \mathcal{N}. For each i, define $X_i=\text{Bd}\big]\{V_j|j\in N_i\}\}$. Each X_i is closed and $\text{Int} X_i=\emptyset$, so that each X_i is...
nowhere dense. Let \(x \in U \). There exists an integer \(k \) such that \(x \) is in the members of \(\{ V_j \}_{j \in \mathbb{N}_k} \), but not in the other members of \(\mathcal{V} \). Let \(V \) be an open set containing \(x \). Then \(V \) intersects some members of \(\{ V_j \}_{j \in \mathbb{N}_k} \). But since \(x \in \bigcup \{ V_j \}_{j \in \mathbb{N}_k} \), then \(x \in X_k \). This says that \(U = \bigcup_{i=1}^{\infty} U \cap X_i \), which contradicts \(U \) being of second category in \(X \).

Conversely, suppose that every countable point finite open cover of \(X \) is locally finite at a dense set of points. Let \(U \) be a nonempty open subset of \(X \). Assume that \(U \) is of first category in \(X \). Then \(U = \bigcup_{i=1}^{\infty} X_i \), where Int \(X_i = \emptyset \) for each \(i \). Let \(U_0 = X \). and for each \(i \), let \(U_i = U \cap X_i \). Let \(\mathcal{U} = \{ U_0, U_1, \ldots \} \), which is a countable point finite open cover of \(X \). Then there exists an \(x \in U \) such that \(\mathcal{U} \) is locally finite at \(x \). So there is an open set \(V \) such that \(x \in V \subset U \) and \(V \) intersects only finitely many members of \(\mathcal{U} \). But \(V \) is not contained in \(\bigcup_{i=1}^{\infty} X_i \) for each \(i \). Then \(V \) must intersect every member of \(\mathcal{U} \), which is a contradiction.

Lemma. Let \(\mathcal{B} \) be a base for the topological space \(X \). If \(X \) is not a Baire space, then there exist a countable point finite collection \(\{ U_i \} \) of open subsets of \(X \) and a countable collection \(\{ B_i \} \) such that \(B_k \subseteq B_n \cap \bigcap_{i=1}^{n} U_i \) for every \(k \).

Proof. By Theorem 1, there exist a countable point finite open cover \(\mathcal{V} = \{ V_i \} \) of \(X \) and an open subset \(V \) of \(X \) such that \(\mathcal{V} \) is not locally finite at any point of \(V \). Let \(B_i \in \mathcal{B} \) be contained in \(V \). There exists an integer \(i_1 \) such that \(B_i \cap V_i \neq \emptyset \). Let \(B_2 \in \mathcal{B} \) be contained in \(B_i \cap V_i \). Proceeding by induction, suppose we have defined distinct \(\{ i_1, \ldots, i_{n-1} \} \) and \(\{ B_1, \ldots, B_n \} \subseteq \mathcal{B} \) such that \(B_k \cap B_{k+1} \cap \bigcap_{i=1}^{k} V_i \) for every \(2 \leq k \leq n \). Then since \(\mathcal{V} \) is not locally finite in \(V \), there exists an integer \(i_n \) distinct from the elements of \(\{ i_1, \ldots, i_{n-1} \} \) such that \(B_i \cap V_{i_n} \neq \emptyset \). Let \(B_{i+1} \in \mathcal{B} \) be contained in \(B_{i_n} \cap V_{i_n} \). Thus \(B_{i+1} \subseteq B_{i_n} \cap \bigcap_{i=1}^{i_n} V_i \), so that \(\{ B_i \} \) is therefore defined by induction. For each \(j \), take \(U_j = V_{i_j} \). Then \(\{ U_j \} \) and \(\{ B_i \} \) satisfy the conclusion of the Lemma.

An *open filter* \(\mathcal{F} \) on a space \(X \) is a nonempty collection of nonempty open subsets of \(X \) satisfying:

(a) If \(U, V \in \mathcal{F} \), then \(U \cap V \in \mathcal{F} \).

(b) If \(U \in \mathcal{F} \) and \(V \) is an open set containing \(U \), then \(V \in \mathcal{F} \). An *open ultrafilter* is an open filter which is maximal in the collection of open filters. An open filter \(\mathcal{F} \) is free if \(\bigcap \mathcal{F} = \emptyset \).

Theorem 2. If \(X \) is not a Baire space, then \(X \) has a free open ultrafilter.

Proof. Let \(\{ U_i \} \) and \(\{ B_i \} \) be defined as in the Lemma. Then \(\{ B_i \} \) is an open filter base on \(X \). Let \(\mathcal{U} \) be an open ultrafilter on \(X \) containing \(\{ B_i \} \). Since \(\bigcap_{i=1}^{n} B_i \subseteq \bigcap_{i=1}^{n} U_i \) and \(\{ U_i \} \) is point finite, then \(\bigcap_{i=1}^{n} B_i = \emptyset \). Therefore \(\bigcap \mathcal{U} = \emptyset \), so that \(\mathcal{U} \) is free.
1972]

A Baire Space Extension

201

The following construction is similar to the Katetov extension found for example in [3] and [4].

Let \(X \) be a topological space, and let \(F \) be a set of open filters on \(X \). Let \(X_F \) be the disjoint union of \(X \) and \(F \). For each open \(U \) in \(X \), let \(U^* = U \cup \{ F \in F | U \in F \} \). Note that \((U \cap V)^* = U^* \cap V^* \) for every open \(U \) and \(V \) in \(X \), and \(\phi^* = \emptyset \). Let \(X_F \) have the topology generated by the base \(\mathcal{B} = \{ U^* | U \text{ is open in } X \} \). Clearly \(X \) is a dense subspace of \(X_F \).

Theorem 3. If \(F \) is any of the following sets,

(a) all open filters on \(X \),
(b) all open ultrafilters on \(X \),
(c) all free open ultrafilters on \(X \),

then \(X_F \) is a Baire space.

Proof. We shall prove Theorem 3 for case (c). Assume that \(X_F \) is not a Baire space. Let \(\{ U_i \} \) and \(\{ B_i \} \) be defined as in the Lemma for the space \(X_F \). Each \(B_i = V_i^* \) for some open \(V_i \) in \(X \). Let \(\mathcal{U} \) be an open ultrafilter on \(X \) containing \(\{ V_i \} \). Since \(\bigcap_{i=1}^{\infty} V_i \subseteq \bigcap_{i=1}^{\infty} B_i \subseteq \bigcap_{i=1}^{\infty} U_i \) and \(\{ U_i \} \) is point finite, then \(\bigcap_{i=1}^{\infty} V_i = \emptyset \). Therefore \(\bigcap \mathcal{U} = \emptyset \), so that \(\mathcal{U} \) is free. Hence \(\mathcal{U} \in F \). Since each \(V_i \in \mathcal{U} \), then \(\mathcal{U} \in V_i^* \). Thus \(\mathcal{U} \in \bigcap_{i=1}^{\infty} B_i \subseteq \bigcap_{i=1}^{\infty} U_i = \emptyset \). This contradiction establishes that \(X_F \) is a Baire space.

Corollary. Every topological space is a dense subspace of some compact Baire space.

Proof. If \(X \) is a topological space, let \(X_F^* \) be the one-point compactification of \(X_F \), where \(F \) is any of the sets given in the statement of Theorem 3. Since \(X_F \) is a dense open subspace of \(X_F^* \), and \(X_F^* \) is a Baire space, then \(X_F^* \) must be a Baire space.

Theorem 4. Let \(F \) be the set of all free open ultrafilters on \(X \), and let \(f \) be a continuous function from \(X \) into a \(T_3 \)-space \(Y \) such that \(f(X) \) is dense in \(Y \). Then there exists a subspace \(Z \) of \(Y_F \) containing \(X \) and a continuous function \(g \) from \(Z \) onto \(Y \) such that \(g|_X = f \) and \(g|_Z : X \) is a homeomorphism from \(Z \setminus X \) onto \(Y \setminus f(X) \). Furthermore, if \(f \) is a homeomorphism then \(g \) is a homeomorphism.

Proof. For each \(y \in Y \setminus f(X) \), let \(V_y \) be the open filter on \(Y \) consisting of all open subsets of \(Y \) containing \(y \). Let \(\mathcal{U}_y \) be an open ultrafilter on \(X \) generated by \(f^{-1}(V_y) \). \(\mathcal{U}_y \) is free since if \(x \in X \), then there exists an open set \(V \) in \(Y \) with \(y \in V \) and \(f(x) \notin V \). Since \(V \in \mathcal{U}_y \), \(f^{-1}(V) \in \mathcal{U}_y \). But \(x \notin f^{-1}(V) \), so that \(\mathcal{U}_y \) must be free. Let \(Z = X \cup \{ \mathcal{U}_y | y \in Y \setminus f(X) \} \). Define \(g: Z \to Y \) by \(g(x) = f(x) \) if \(x \in X \) and \(g(\mathcal{U}_y) = y \) for each \(y \in Y \setminus f(X) \). To see that \(g \) is well defined, let \(y_1 \) and \(y_2 \) be distinct points of \(Y \setminus f(X) \). Then there exists an open \(U \) in \(Y \) such that \(y_1 \notin U \) and \(y_2 \notin U \). Hence \(U \in \mathcal{U}_{y_1} \) and \(Y \setminus U \in \mathcal{U}_{y_2} \). But then \(f^{-1}(U) \in \mathcal{U}_{y_1} \) and \(X \setminus f^{-1}(U) \in \mathcal{U}_{y_2} \). Therefore \(\mathcal{U}_{y_1} \neq \mathcal{U}_{y_2} \).
The fact that g is continuous follows from the fact that X is dense in Z, the fact that Y is regular, and the fact that for each $z \in Z$ the restriction $g|X \cup \{z\}$ is continuous.

To see that $g|Z \times X$ is a homeomorphism, let $h = g|Z \times X$. Let $y \in Y \setminus X$, and let U^* contain $h^{-1}(y)$ for some open U in X. Then $h^{-1}(y) = \mathcal{U}_y$ and $U \in \mathcal{U}_y$. Hence $f^{-1}(V) \subseteq U$ for some $V \in \mathcal{V}_y$. Let $y' \in V$. Then $V \in \mathcal{V}_y$, so that $f^{-1}(V) \subseteq \mathcal{U}_y$. But then $U \in \mathcal{U}_y$, so that $h^{-1}(y') = \mathcal{U}_y \subseteq U^*$. Therefore $h^{-1}(V) \subseteq U^*$.

Finally, suppose that f is a homeomorphism. Let $y \in Y$, and let U be open in X such that $g^{-1}(y) \subseteq U^*$. If $y \in f(X)$, then there exists an open V in Y such that $f^{-1}(V) \subseteq U$. If $y \notin f(X)$, then $g^{-1}(y) = \emptyset$, so that $U \in \mathcal{U}_y$. But then there exists an open subset V of Y containing y such that $f^{-1}(V) \subseteq U$. In either case, let $y' \in V$. If $y' \in f(X)$, then $g^{-1}(y') = f^{-1}(y') \subseteq f^{-1}(V) \subseteq U \subseteq U^*$. If $y' \notin f(X)$, then $V \in \mathcal{V}_y$, so that $f^{-1}(V) \subseteq \mathcal{U}_y$. Hence $U \in \mathcal{U}_y$, so that $g^{-1}(y') = \mathcal{U}_y \subseteq U^*$. Therefore, since y' is arbitrary, $g^{-1}(V) \subseteq U^*$.

Corollary 1. If X is a T_3-space, then every T_3-space extension of X can be embedded as a subspace of X_F containing X.

Corollary 2. Let X be a Tychonoff space and Y be a Hausdorff space. Then Y is a compactification of X if and only if Y can be embedded as a compact subspace of X_F containing X.

We might note that it follows from Corollary 2 that X_F is in general not Hausdorff. In fact if X is H-closed, no subset of X_F containing X as a proper subset is ever Hausdorff. This is because a Hausdorff space X is H-closed if and only if every embedding of X into a Hausdorff space is a closed embedding. Therefore if X is an H-closed space which is not a Baire space (e.g., Herrlich’s example in [2]), then X is a Hausdorff space which cannot have a Hausdorff Baire space extension. Observe that X could never be regular, since a regular H-closed space must be compact, and hence a Baire space. It would be of interest to know whether every regular space has a regular Baire space extension.

References

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061