On the extremal solutions of $n$th-order linear differential equations
HTML articles powered by AMS MathViewer
- by W. J. Kim
- Proc. Amer. Math. Soc. 33 (1972), 62-68
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294780-9
- PDF | Request permission
Abstract:
Distribution of zeros of extremal solutions of linear nth-order differential equations is discussed. Existence and nonexistence of extremal solutions with certain zero distributions are established. For instance, it is proved that every extremal solution for $[\alpha , {\eta _1}(\alpha )]$ of the equation ${y^{(n)}} + {p_{n - 1}}{y^{(n - 1)}} + \cdots + {p_0}y = 0$ has a zero of order 2 at ${\eta _1}(\alpha )$ and has no more than $n - 2$ zeros on $[\alpha , {\eta _1}(\alpha ))\;{\text {if}}\;{p_i} \leqq 0,i = 0,1, \cdots , n - 2$.References
- R. G. Aliev, On certain properties of solutions of ordinary differential equations of fourth order, Sb. Aspirantsh. Kazan Institute 1964, 15-30. (Russian)
- N. V. Azbelev and Z. B. Calyuk, On the question of the distribution of the zeros of solutions of a third-order linear differential equation, Mat. Sb. (N.S.) 51 (93) (1960), 475–486 (Russian). MR 0121529
- John H. Barrett, Third-order differential equations with nonnegative coefficients, J. Math. Anal. Appl. 24 (1968), 212–224. MR 232039, DOI 10.1016/0022-247X(68)90060-7
- John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415–509. MR 257462, DOI 10.1016/0001-8708(69)90008-5
- Philip Hartman, Unrestricted $n$-parameter families, Rend. Circ. Mat. Palermo (2) 7 (1958), 123–142. MR 105470, DOI 10.1007/BF02854523
- W. J. Kim, Oscillatory properties of linear third-order differential equations, Proc. Amer. Math. Soc. 26 (1970), 286–293. MR 264162, DOI 10.1090/S0002-9939-1970-0264162-2
- W. J. Kim, Simple zeros of solutions of $n\textrm {th}$-order linear differential equations, Proc. Amer. Math. Soc. 28 (1971), 557–561. MR 274861, DOI 10.1090/S0002-9939-1971-0274861-5
- Walter Leighton and Zeev Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 102639, DOI 10.1090/S0002-9947-1958-0102639-X
- A. Ju. Levin, The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43–96 (Russian). MR 0254328
- Zdzisław Opial, On a theorem of O. Aramă, J. Differential Equations 3 (1967), 88–91. MR 206375, DOI 10.1016/0022-0396(67)90008-3
- A. C. Peterson, Distribution of zeros of solutions of a fourth order differential equation, Pacific J. Math. 30 (1969), 751–764. MR 252758, DOI 10.2140/pjm.1969.30.751
- A. C. Peterson, A theorem of Aliev, Proc. Amer. Math. Soc. 23 (1969), 364–366. MR 249720, DOI 10.1090/S0002-9939-1969-0249720-5
- Vratislav Pudei, Über die Eigenschaften der Lösungen linearer Differentialgleichungen gerader Ordnung, Časopis Pěst. Mat. 94 (1969), 401–425 (German). MR 0273112
- Thomas L. Sherman, Properties of solutions of $n\textrm {th}$ order linear differential equations, Pacific J. Math. 15 (1965), 1045–1060. MR 185185, DOI 10.2140/pjm.1965.15.1045
- Thomas L. Sherman, Conjugate points and simple zeros for ordinary linear differential equations, Trans. Amer. Math. Soc. 146 (1969), 397–411. MR 255912, DOI 10.1090/S0002-9947-1969-0255912-6
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 33 (1972), 62-68
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294780-9
- MathSciNet review: 0294780