PERTURBATIONS OF DISSIPATIVE OPERATORS WITH RELATIVE BOUND ONE

PAUL R. CHERNOFF

Abstract. Let A be the generator of a (C_0) contraction semigroup on a Banach space. Let B be a dissipative operator with densely defined adjoint. Assume that the inequality $\|Bx\| \leq \|Ax\| + b\|x\|$ holds on the domain of A. Then the closure of $A + B$ generates a (C_0) contraction semigroup.

Let A be the generator of a (C_0) contraction semigroup on a Banach space X. Let B be a dissipative operator on X in the sense of Lumer and Phillips [3]. Assume that $\mathcal{D}(B) \supseteq \mathcal{D}(A)$. Since A is closed it follows that there are constants $a, b < \infty$ such that, for every $x \in \mathcal{D}(A)$,

$$\|Bx\| \leq a\|Ax\| + b\|x\|.$$

We say that B is bounded relative to A and refer to a as a relative bound.

Gustafson [1], generalizing basic work of Rellich, Kato, and others (cf. [2]), showed that if the bound a in (1) can be taken strictly less than 1 it follows that $A + B$ is the generator of a (C_0) contraction semigroup. This is known to fail for $a > 1$. On the other hand, Wüst [4] recently showed that if A and B are symmetric operators on a Hilbert space with A selfadjoint then the validity of (1) with $a = 1$ implies that $A + B$ is essentially selfadjoint, i.e., has selfadjoint closure. (Kato [2] had proved a slightly weaker result, starting from the analogue of (1) with norms replaced by their squares.)

In this note we use a simplified version of Wüst's argument to extend the result to dissipative operators in a rather general Banach space setting.

THEOREM. Let X be a Banach space. Let A and B be as above with $\mathcal{D}(B) \supseteq \mathcal{D}(A)$. Assume that there is a constant $b < \infty$ such that, for all $x \in \mathcal{D}(A)$,

$$\|Bx\| \leq \|Ax\| + b\|x\|.$$

Suppose also that the adjoint B^* has a dense domain in X^*. Then the closure of $A + B$ is the generator of a (C_0) semigroup.

Received by the editors July 22, 1971.

AMS 1970 subject classifications. Primary 47A55, 47B44; Secondary 47D05.

Key words and phrases. Relatively bounded perturbations, dissipative operators, contraction semigroups.

1 Research partially supported by National Science Foundation grant GP-30798.
Remarks. 1. Our proof can easily be modified to go through under the assumption that A^*, rather than B^*, is densely defined.

2. If the space X is reflexive then A^* is densely defined. This uses only the fact that A is closed and densely defined; the familiar "graph" argument, given by von Neumann in Hilbert space, works perfectly well in any reflexive Banach space.

Thus the hypothesis on B^* is not needed if X is reflexive.

3. The result of Wüst follows from the proof of our theorem.

Proof of the theorem. First note that $A + B$ is dissipative and therefore closable with dissipative closure [3, Lemma 3.3]. By the Hille-Yosida-Phillips characterization of semigroup generators it is enough to show that $I - (A + B)$ has dense range.

Suppose that $y^* \in X^*$ annihilates the range of $I - (A + B)$. We can find $y \in X$ with $\|y\| = \|y^*\|$ and $\langle y^*, y \rangle \geq \frac{1}{2} \|y^*\|^2$.

Now, by the theorem of Gustafson quoted earlier, it follows from (2) that $A + tB$ is a semigroup generator for $0 < t < 1$. Hence for each such t there is an element $x_t \in \mathcal{D}(A + tB) = \mathcal{D}(A)$ with

$$y = (1 - A - tB)x_t.$$

We have $\|x_t\| \leq \|y\|$ since $A + tB$ is dissipative.

Furthermore, by (2),

$$\|Bx_t\| \leq \|Ax_t\| + b \|x_t\|$$

$$\leq \|(A + tB)x_t\| + \|tBx_t\| + b \|x_t\|$$

$$= \|x_t - y\| + tBx_t + b \|x_t\|$$

whence

$$\|(1 - t)Bx_t\| \leq \|x_t - y\| + b \|x_t\| \leq (1 + b) \|x_t\| + \|y\|,$$

that is,

$$\|(1 - t)Bx_t\| \leq (2 + b) \|y\|. \quad (4)$$

Now $\{x_t\}$ is bounded, and therefore it has a subnet $x_{t'}$ which converges in the weak * sense as $t' \to 1$ to some element $x^{**} \in X^{**}$. We shall show that $(1 - t')Bx_{t'}$ converges weakly to 0.

For this, suppose $z^* \in \mathcal{D}(B^*)$. Then we have

$$\langle z^*, (1 - t')Bx_{t'} \rangle = (1 - t')\langle B^*z^*, x_{t'} \rangle$$

$$\to 0 \cdot \langle B^*z^*, x^{**} \rangle = 0. \quad (5)$$

But since $\mathcal{D}(B^*)$ is dense in X^* and uniform boundedness holds by (4), a standard approximation argument shows that (5) is valid for all $z^* \in Y^*$. In particular it holds for y^*.

But
\[\langle y^*, y \rangle = \langle y^*, (1 - A - tB)x_t \rangle = \langle y^*, (1 - A - B)x_t + (1 - t)Bx_t \rangle = \langle y^*, (1 - t)Bx_t \rangle \]
since \(y^* \) kills \((1 - A - B)x_t \) by assumption.

Hence
\[\frac{1}{t} \| y^* \|^2 \leq \langle y^*, y \rangle = \lim_{t \to 1} \langle y^*, (1 - t')Bx_{t'} \rangle = 0. \]

This shows that \(y^* = 0 \). Hence the range of \(1 - A - B \) is dense.

Note added in proof. On November 24, 1971, I received from Professor N. Okazawa a preprint entitled "A perturbation theorem for linear contraction semigroups on reflexive Banach spaces". His main result is the same as ours (for the case of reflexive spaces).

REFERENCES