A set-theoretic proposition implying the metrizability of normal Moore spaces
HTML articles powered by AMS MathViewer
- by Franklin D. Tall
- Proc. Amer. Math. Soc. 33 (1972), 195-198
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300239-2
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 42 (1974), 647.
Abstract:
A set-theoretic proposition is shown to be equivalent to a topological statement implying that all first countable normal Hausdorff spaces are collectionwise normal, and hence that all normal Moore spaces are metrizable.References
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- R. H. Bing, A translation of the normal Moore space conjecture, Proc. Amer. Math. Soc. 16 (1965), 612–619. MR 181976, DOI 10.1090/S0002-9939-1965-0181976-6 F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Thesis, University of Wisconsin, Madison, Wis., 1969.
- Franklin D. Tall, New results on the normal Moore space problem, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 120–126. MR 0264603
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 33 (1972), 195-198
- MSC: Primary 54E30
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300239-2
- MathSciNet review: 0300239