On polynomials which commute with a given polynomial
Author:
William M. Boyce
Journal:
Proc. Amer. Math. Soc. 33 (1972), 229-234
MSC:
Primary 12D99
DOI:
https://doi.org/10.1090/S0002-9939-1972-0291138-3
MathSciNet review:
0291138
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: By extending a theorem of Jacobsthal, the following result is obtained: if g is a nonlinear polynomial, there is an integer $J(g) \geqq 1$ such that for each $m > 0$ there are either $J(g)$ or zero distinct polynomials of degree m which commute with g. A formula is given for computing $J(g)$ from the coefficients of g.
- E. A. Bertram, Polynomials which commute with a Tchebycheff polynomial, Amer. Math. Monthly 78 (1971), 650–653. MR 288104, DOI https://doi.org/10.2307/2316575
- H. D. Block and H. P. Thielman, Commutative polynomials, Quart. J. Math. Oxford Ser. (2) 2 (1951), 241–243. MR 45250, DOI https://doi.org/10.1093/qmath/2.1.241
- Ernst Jacobsthal, Über vertauschbare Polynome, Math. Z. 63 (1955), 243–276 (German). MR 74373, DOI https://doi.org/10.1007/BF01187936
- J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399–448. MR 1501252, DOI https://doi.org/10.1090/S0002-9947-1923-1501252-3
- H. T. Engstrom, Polynomial substitutions, Amer. J. Math. 63 (1941), 249–255. MR 3599, DOI https://doi.org/10.2307/2371520
- Howard Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer. J. Math. 64 (1942), 389–400. MR 6162, DOI https://doi.org/10.2307/2371692
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12D99
Retrieve articles in all journals with MSC: 12D99
Additional Information
Keywords:
Commuting functions,
commuting polynomials,
common fixed point,
Tchebycheff polynomials,
functional composition
Article copyright:
© Copyright 1972
American Mathematical Society