A stronger Bertrand’s postulate with an application to partitions
Author:
Robert E. Dressler
Journal:
Proc. Amer. Math. Soc. 33 (1972), 226-228
MSC:
Primary 10A45
DOI:
https://doi.org/10.1090/S0002-9939-1972-0292746-6
Addendum:
Proc. Amer. Math. Soc. 38 (1973), 667-667.
MathSciNet review:
0292746
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we give a stronger form of Bertrand’s postulate and use it to prove that every positive integer, except 1, 2, 4, 6, and 9, can be written as the sum of distinct odd primes.
- L. M. Chawla and C. D. N. Yeung, On an additive arithmetic function and its related partition function, J. Nat. Sci. and Math. 12 (1972), 103–111. MR 332648 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10A45
Retrieve articles in all journals with MSC: 10A45
Additional Information
Keywords:
Bertrand’s postulate,
primes,
partition
Article copyright:
© Copyright 1972
American Mathematical Society