An extremal problem for functions with positive real part
HTML articles powered by AMS MathViewer
- by R. S. Gupta
- Proc. Amer. Math. Soc. 33 (1972), 455-462
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293088-5
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 42 (1974), 647.
Abstract:
Let $\mathcal {P}$ be the class of functions $P(z)$, normalized so that $P(0) = 1$ which are regular in $|z| < 1$ and have positive real part there. We obtain the minimum (maximum) real part of ${e^{i\alpha }}(zP’/P)$ for fixed $\alpha$ and $|z|,\alpha \in [0,2\pi ],|z| < 1$ and P running over the class $\mathcal {P}$.References
- W. E. Kirwan II, Extremal problems for certain classes of analytic functions, Ph.D. Thesis, Rutgers University, New Brunswick, N. J., 1964.
- Richard J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143–158. MR 160890
- M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82–93. MR 133454, DOI 10.1090/S0002-9947-1962-0133454-X
- M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236–253. MR 142756, DOI 10.1090/S0002-9947-1963-0142756-3
- K\B{o}ichi Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287–297. MR 177111, DOI 10.2969/jmsj/01630287
- V. A. Zmorovič, On bounds of convexity for starlike functions of order $\alpha$ in the circle $| z| <1$ and in the circular region $0<| z| <1$, Mat. Sb. (N.S.) 68 (110) (1965), 518–526 (Russian). MR 0197712
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 33 (1972), 455-462
- MSC: Primary 30A76
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293088-5
- MathSciNet review: 0293088