PURE STATES WITH THE RESTRICTION PROPERTY

BRUCE A. BARNES

Abstract. Conditions are given which imply that a pure state of a B^*-algebra A restricts to a pure state of some maximal commutative $*$-subalgebra of A.

1. Introduction. A pure state ρ of a B^*-algebra A has the restriction property if there exists a maximal commutative $*$-subalgebra C of A such that the restriction of ρ to C is a pure state of C (i.e. ρ is a nonzero multiplicative linear functional on C). The work of R. Kadison and I. Singer in [4] raises the question of whether or not each pure state of a B^*-algebra has the restriction property. This question was answered by J. Aarnes and R. Kadison for a special class of B^*-algebras A. They prove that when A is separable and has an identity, then each pure state of A has the restriction property [1, Theorem 2]. Again in the case when A is separable, C. Akemann in [2] removed the requirement that A have an identity and made other improvements in the result of Aarnes and Kadison (including a proof that in this case a pure state ρ of A is the unique extension of a pure state of some maximal commutative $*$-subalgebra of A). However, the general question remains open.

In this note we give several new conditions on a pure state ρ of a B^*-algebra which imply that ρ has the restriction property. A is a B^*-algebra throughout. Let $a \mapsto \pi(a)$ be a $*$-representation of A on a Hilbert space H. A positive functional ρ is represented by π if there is $\xi \in H$, $\|\xi\| = 1$, such that $\rho(a) = (\pi(a)\xi, \xi)$ for all $a \in A$. A pure state of A is always represented by some irreducible $*$-representation of A; see [3, pp. 32, 33, 37] for details.

Now let ρ be a pure state of A which is represented by an irreducible $*$-representation π of A on a Hilbert space H. We prove that if either H is separable or $\pi(A)$ contains $F(3t)$, the algebra of bounded operators on H with finite dimensional range, then ρ has the restriction property. The proofs of these results are indebted to the ideas of Aarnes and Kadison in [1].

2. The results. Let be H a Hilbert space. $B(H)$ is the algebra of bounded operators on H. When H is a subspace of H' and B is a...
nonempty subset of $\mathcal{B}(\mathcal{H})$, then $B\mathcal{H}$ is the linear span of the vectors $\{T\psi | T \in B, \psi \in \mathcal{H}\}$. $[B\mathcal{H}]$ is the closure of $B\mathcal{H}$ in \mathcal{H}. When $T \in \mathcal{B}(\mathcal{H})$, then $\mathcal{N}(T)$ is the null space of T and $\mathcal{R}(T)$ is the range of T.

Lemma. Let \mathcal{H} be a separable Hilbert space and assume that A is a closed $*$-subalgebra of $\mathcal{B}(\mathcal{H})$ such that $[A\mathcal{H}]=\mathcal{H}$. Then there exists $T \in A$, $T \geq 0$, such that $\mathcal{N}(T)=0$.

Proof. Since $[A\mathcal{H}]=\mathcal{H}$, then given any $\psi \in \mathcal{H}$, $\psi \neq 0$, there exists $S \in A$ such that $S\psi \neq 0$. Therefore for each $\psi \in \mathcal{H}$, $\psi \neq 0$, we can choose $T \in A$ such that $T\psi \geq 0$ and $T\psi(\psi) \neq 0$. Let $U_\psi = \{\xi \in \mathcal{H} | T_\psi(\xi) \neq 0\}$. The collection $\{U_\psi | \psi \in \mathcal{H}, \psi \neq 0\}$ is an open cover for $\mathcal{H}\{0\}$. By the open cover of a separable metric space is Lindelöf (every open cover has a countable subcover). It follows that there exists a sequence $(T_n) \subset A$ such that $T_n \geq 0$ and $\bigcap_{n=1}^{+\infty} T_n(\mathcal{H}) = 0$. Let $a_n = (2\|T_n\|)^{-1}$, and set $T = \sum_{n=1}^{+\infty} a_n T_n$. If $T\psi = 0$, then $\sum_{n=1}^{+\infty} a_n (T_n\psi, \psi) = 0$. Therefore $T_n\psi, \psi = 0$ for each n. But then $T_n\psi = 0$, which implies $T\psi = 0$ for each n. Therefore $\psi = 0$.

When D is a nonempty subset of A, we let

$$\mathcal{C}(D) = \{a \in A | ad = da \text{ for all } d \in D\}.$$

If D is selfadjoint, then $\mathcal{C}(D)$ is a closed $*$-subalgebra of A.

Theorem 1. Let $a \rightarrow \tau(a)$ be an irreducible $*$-representation of A on a separable Hilbert space \mathcal{H}. If ρ is a positive functional represented by τ, then ρ has the restriction property.

Proof. There exists $\xi \in \mathcal{H}$, $\|\xi\|=1$, such that $\rho(a) = \langle \tau(a)\xi, \xi \rangle$ for all $a \in A$. Let $K = \{a \in A | \rho(a*a) = 0\} = \{a \in A | \tau(a)\xi = 0\}$. Set $A_0 = K \cap K^*$ and $\mathcal{H}_0 = \{\xi\}$. Given $a \in A_0$ and $\psi \in \mathcal{H}$, we have $\langle \tau(a)\psi, \xi \rangle = \langle \psi, \tau(a^*)\xi \rangle = 0$. Therefore $\tau(A_0)\mathcal{H}_0 \subset \mathcal{H}_0$. Let E be the orthogonal projection of \mathcal{H} onto \mathcal{H}_0. Then

$$E\tau(a) = \tau(a) \quad \text{for all } a \in A_0.$$

By [3, Corollaire (2.8.4)], $\tau(A)$ acts strictly irreducibly on \mathcal{H}. Therefore there exists $v \in A$ such that $\tau(v)\xi = \xi$. Since $\tau(v + v^* - v^*v)\xi = \xi$, we may assume that $v = v^*$. Set $u = 2v - v^2$. Then $I - \tau(u) = (I - \tau(v))^2 \geq 0$ where I is the identity operator on \mathcal{H}. If $\psi \in \mathcal{H}$, $\langle (I - \tau(v))\psi, \xi \rangle = \langle \psi, (I - \tau(v))^2 \xi \rangle = 0$. Therefore

$$E(I - \tau(u)) = I - \tau(u).$$

Given $\psi \in \mathcal{H}_0$, the transitivity theorem [3, Théorème (2.8.3)] implies that there exists $a \in A$ such that $a = a^*$, $\tau(a)\xi = 0$, and $\tau(a)\psi = \psi$. Then $a \in A_0$, and this proves that $\tau(A_0)\mathcal{H}_0 = \mathcal{H}_0$. By the Lemma there exists $w \in A_0$, $w \geq 0$,
such that $\mathcal{N}(\pi(w)) \cap \mathcal{H}_0 = 0$. Set $S = I - \pi(u) + \pi(w)$. Since $I - \pi(u) \geq 0$, then $\mathcal{N}(S) \cap \mathcal{H}_0 = 0$. Let $y = w - w$, and choose C_0 a maximal commutative $*$-subalgebra of $\mathcal{C}(y) \cap A_0$. Let C be the closed commutative $*$-subalgebra of A generated by y and C_0. We prove that C is a maximal commutative $*$-subalgebra of A. Assume that $b = b^*$ and $b \in \mathcal{C}(C)$. Let $b_0 = b - \rho(b)y$. Then $b_0 = b^*$ and $b_0 \in \mathcal{C}(C)$. Using (1) and (2) we have $ES = E(I - \pi(u) + \pi(w)) = I - \pi(u) + \pi(w) = S$. Also $\pi(b_0)S = S\pi(b_0)$. Then

$$(E\pi(b_0) - \pi(b_0)E)S = S\pi(b_0) - \pi(b_0)S = 0.$$

Since $\mathcal{N}(S) \cap \mathcal{H}_0 = 0$ and $S = S^*$, then $(\mathcal{H}(S))^- = \mathcal{H}_0 = \mathcal{H}(E)$. Therefore $(E\pi(b_0) - \pi(b_0)E)E = 0$. It follows that $\pi(b_0)E = E\pi(b_0)$. Then there exists a scalar λ such that $\pi(b_0)\xi = \lambda \xi$. Note that $\rho(y) = \rho(u - w) = \rho(2v - v^2) = (\pi(2v - v^2)\xi, \xi) = 1$. Therefore $\lambda = (\pi(b_0)\xi, \xi) = \rho(b_0) = \rho(b - \rho(b)y) = 0$. Then $b_0 \in \mathcal{C}(y) \cap A_0$, and it follows that $b_0 \in C_0$. But then $b \in C$. This proves that C is a maximal commutative $*$-subalgebra of A.

p is nonzero on C since $p(y) = 1$. It remains to be shown that p is multiplicative on C. Given $a \in C_0$, then $ya \in \mathcal{C}(y)$. Also $\pi(\pi(a)\xi) = \pi(p(a)\xi) = 0$ and similarly $\pi(a^*y)\xi = 0$. Therefore ya and $(ya)^*$ are in $\mathcal{C}(y) \cap A_0$. Thus $ya \in C_0$. Furthermore $\pi(y)\xi = (\pi(u - \pi(w))\xi = \pi(u)\xi = \xi$. Thus $\pi(y^n - y)\xi = 0$ for any positive integer n. Then $y^n - y \in \mathcal{C}(y) \cap A_0$, and therefore $y^n - y \in C_0$ for each positive integer n. It follows that every element of C has the form $\lambda y + a$ for some scalar λ and some $a \in C_0$. Then given λ, μ scalars and $a, b \in C_0$,

$$\rho((\lambda y + a)(\mu y + b)) = \lambda \mu = \rho(\lambda y + a)\rho(\mu y + b).$$

This completes the proof of the theorem.

In the case where A has an identity, the proof of Theorem 1 can be considerably simplified.

Theorem 2. Let $a \to \pi(a)$ be a $*$-representation of A on a Hilbert space \mathcal{K} with the property that $\mathcal{F}(\mathcal{K}) = \pi(A)$. If p is a positive functional represented by π, then p has the restriction property.

Proof. Assume that $\rho(a) = (\pi(a)\xi, \xi)$ for all $a \in A$, where $\xi \in \mathcal{K}$, $\|\xi\| = 1$. Let $K = \{a \in A | \pi(a)\xi = 0\}$, and set $A_0 = K \cap K^*$. Let E be the orthogonal projection with one dimensional range containing ξ. By hypothesis there exists $e \in A$, $e = e^*$, such that $\pi(e) = E$. Choose C_0 a maximal commutative $*$-subalgebra of $\mathcal{C}(e) \cap A_0$. Let C be the closed commutative $*$-subalgebra of A generated by e and C_0. Assume that $b = b^* \in \mathcal{C}(C)$. Set $b_0 = b - \rho(b)e$. Note that $\rho(e) = (E\xi, \xi) = 1$, so that $\rho(b_0) = 0$. Then $\pi(b_0)E = E\pi(b_0)$. Therefore there exists a scalar λ such that $\pi(b_0)\xi = \lambda \xi$. Then $\lambda = (\pi(b_0)\xi, \xi) = \rho(b_0) = 0$. It follows that $b_0 \in \mathcal{C}(e) \cap A_0$, so that by the definition of C_0, $b_0 \in C_0$. Then $b \in C$. This proves that C is
a maximal commutative *-subalgebra of A. The proof that ρ is a nonzero multiplicative functional on C proceeds as in the last paragraph of the proof of Theorem 1 with e in place of y.

When A is a GCR algebra (postliminaire) and $a \mapsto \pi(a)$ is an irreducible *-representation of A on a Hilbert space \mathcal{H}, then it is well known that $\pi(A) \subseteq \pi(A)$; see [3, Théorème (4.3.7)]. Therefore we have as a corollary of Theorem 2:

Corollary. A pure state of a GCR algebra A has the restriction property.

References

Department of Mathematics, University of Oregon, Eugene, Oregon 97403