EXTENSIONS OF LEFT UNIFORMLY CONTINUOUS FUNCTIONS ON A TOPOLOGICAL SEMIGROUP

SAMUEL J. WILEY

Abstract. For any topological semigroup S with separately continuous operation, let C(S) denote the set of all bounded continuous real valued functions on S with the supremum norm and let LUC(S) denote the set of all f in C(S) such that whenever \((s(t))\) is a net in S which converges to some s in S, then \(\sup\{|f(s(t))−f(st)| : t \in S\}\) converges to 0. In this paper we prove that if S is an abelian subsemigroup of a compact topological group and \(f \in \text{LUC}(S)\), then there is an \(F \in \text{LUC}(G)\) where \(F(s) = f(s)\) for all \(s \in S\). We also show whenever there is an extension of the type indicated above, there is a norm preserving extension.

1. Introduction. By a topological semigroup we mean a semigroup with a Hausdorff topology in which the product st is separately continuous. If \(X\) is a topological space, \(C(X)\) indicates the algebra of all bounded continuous real valued functions on \(X\) with the supremum norm. If \(S\) is a topological semigroup, \(l_s: C(S) \rightarrow C(S)\) is defined by \(l_sf(t) = f(st)\) and \(r_s: C(S) \rightarrow C(S)\) is defined by \(r_sf(t) = f(ts)\). Let \(S\) be a topological semigroup. \(f \in C(S)\) is said to be left uniformly continuous or \(f \in \text{LUC}(S)\) when the function \(l_s: S \rightarrow C(S)\) defined by \(l_s = l_sf\) is continuous on \(S\). The space \(\text{LUC}(S)\) is a closed subalgebra of \(C(S)\) which contains the constants [8]. Mitchell [7] considered topological semigroups \(T\) and subsemigroups \(S\). He showed if \(S\) is dense in \(T\) and \(\text{LUC}(S)\) has a left invariant mean, so has \(\text{LUC}(T)\).

In the next section we will show that if \(S\) is an abelian subsemigroup of a compact topological group, then every \(f \in \text{LUC}(S)\) has an extension to an \(F \in \text{LUC}(T)\).

If \((X, \mathcal{U})\) is a uniform space, then \(\text{UC}(X)\) denotes the set of all bounded real valued functions on \(X\) which are uniformly continuous with respect to \(\mathcal{U}\). In the following proposition the equivalence of (a) and (b) follows from...
Kelley [5, p. 86], (b) implies (c) is found in Granirer and Lau [2, Lemma 3], the rest comes directly from the definitions.

Proposition 1. Let \(S \) **be a topological semigroup and** \(f \in C(S) \). **The following are equivalent.**

(a) \(f \in LUC(S) \).

(b) For every \(s \in S \), if \(\{s(\gamma)\} \) is a net converging to \(s \), then \(l_s f \) converges to \(l_s f \) uniformly.

(c) \(\{r_s f : \gamma \in S\} \) is an equicontinuous family of functions on \(S \).

 If \(S \) is a topological group, then (a), (b) and (c) are equivalent to (d).

(d) \(f \in UC(S) \) where the uniformity on \(S \) is the usual right uniformity on a topological group [1, p. 243].

2. **Extension theorems.** It will be convenient to have the following definition. Let \(S, T \) be topological semigroups, \(S \) a subsemigroup of \(T \). Then we will say the pair \((S, T) \) has property \(P \), if for every \(f \in LUC(S) \) there is an \(F \in LUC(T) \) such that \(F|_S = f \). \(F|_S \) indicates the restriction of \(F \) to \(S \).

Proposition 2. Let \(G \) **be a topological group with the right uniformity and** \(S \) **a subsemigroup of** \(G \) **with the restriction uniformity. The following are equivalent.**

(a) The pair \((S, G) \) has property \(P \).

(b) \(LUC(S) = UC(S) \).

(c) \(LUC(S) = UC(S) \).

Proof. (a) \(\Rightarrow \) (b) If \(f \in LUC(S) \), then \(f = F|_S \) where \(F \in LUC(G) = UC(G) \). Hence \(f \in UC(G)|_S \subset UC(S) \).

(b) \(\Rightarrow \) (c) If \(f \in UC(S) \), by Katetov [4, Theorem 3], \(f \in UC(G)|_S = LUC(G)|_S \). Hence, by Lau [6, Proposition 1.3.1], \(f \in LUC(S) \).

(c) \(\Rightarrow \) (a) If \(f \in LUC(S) = UC(S) \), by Katetov [4, Theorem 3] there is an \(F \in UC(G) = LUC(G) \) such that \(F|_S = f \).

The following theorem is an immediate consequence of Propositions 1 and 2.

Theorem 3. If \(G \) **is a topological group and** \(G' \) **is a subgroup of** \(G \), **then the pair** \((G', G) \) **has property** \(P \).

The following example shows that we do not always have the extension property from a subsemigroup of a topological group to the group.

Example. Let \(G \) be the real numbers under addition, \(S \) be the positive real numbers and \(f(x) = \sin(1/x) \). \(f \) is not uniformly continuous on \(S \) since it does not have a continuous extension to \(cl(S) \). But \(f \in LUC(S) \). So the pair \((S, G) \) does not have property \(P \). We can see \(f \in LUC(S) \) since if
\{s(n)\} is a net in S converging to $s \in S$, then

$$\lim_{n \to \infty} f(x) - f(x) = \left| \sin \frac{1}{s(n) + x} - \sin \frac{1}{s + x} \right|$$

$$= \left| 2 \sin \frac{1}{2 \left(s(n) + x \right)} \frac{1}{s + x} \right| \cos \left(\frac{1}{2 \left(s(n) + x \right)} + \frac{1}{2 \left(s + x \right)} \right)$$

$$\leq \frac{2 \sin \frac{1}{2 \left(s(n) + x \right)}}{s - s(n)} \frac{s - s(n)}{(s(n) + x)(s + x)}$$

But s is positive, so for sufficiently large n, $s(n) > \delta$ and $s > \delta$ where $\delta > 0$. Since $x > 0$, $s(n) + x > \delta$ and $s + x > \delta$. So

$$\frac{s - s(n)}{(s(n) + x)(s + x)} < \left| \frac{s - s(n)}{\delta^2} \right| \quad \text{for all } x \in S.$$

Since the sine function is continuous and $(s - s(n))/\delta^2$ converges to 0, there is an n_0 such that for all $n \geq n_0$,

$$2 \sin \frac{1}{2 \left(s(n) + x \right)} \frac{s - s(n)}{(s(n) + x)(s + x)} < \varepsilon \quad \text{for all } x \in S.$$

So $f \in \text{LUC}(S)$.

Mitchell [7, pp. 640–641] has given an example of a compact topological semigroup T and a dense subsemigroup S of T where the pair (S, T) does not have property P. We will now show that we have the desired extension whenever T is a compact topological group and S is abelian.

Theorem 4. If G is a compact topological group and S is an abelian subsemigroup of G, then the pair (S, G) has property P.

Proof. (i) Since $\text{cl}(S)$ is a compact cancellation semigroup, it is a topological group [3, Theorem 9.16]. Hence by Theorem 3 we may assume $\text{cl}(S) = G$.

(ii) Let $f \in \text{LUC}(S)$, $x(\alpha)$ be a net in S which converges to e and $a \in S$. Then $x(\alpha)a$ converges to a. Hence $\lim_{\alpha} f(x(\alpha)y) = f(ay)$ uniformly for all y in S.

(iii) Now since G is compact, there is a unique uniformity for G. This consists of all neighborhoods of the diagonal Δ [5, p. 197]. Let $A_x = \{(x, y) \in S \times S : |f(x) - f(y)| \geq \varepsilon \}$. Then f is uniformly continuous on S iff for every $\varepsilon > 0$, $\text{cl}(A_x) \cap \Delta = \emptyset$. Suppose there is an $f \in \text{LUC}(S)$ where $f \notin \text{LUC}(S)$. Then there is an $\varepsilon > 0$ such that $\text{cl}(A_x) \cap \Delta \neq \emptyset$. Hence there is a net $(x(\alpha), y(\beta))$ in A_x which converges to $(t, t) \in \Delta$. Now let $\{t(\beta)\}$ be a net in S which converges to t^{-1}. Then $\lim_{\beta} (x(\alpha)t(\beta)) = e = \lim_{\beta} (y(\alpha)t(\beta))$. Then by part (ii) above given $\varepsilon > 0$ there are α and β such that

$$|f(x(\alpha)t(\beta)) - f(s)| < \varepsilon/2 \quad \text{and} \quad |f(y(\alpha)t(\beta)) - f(s)| < \varepsilon/2.$$
for all $s \in S$. But $x(s) \in S$ and $y(s) \in S$ hence

$$|f(x(s)) - f(y(s))| \leq |f(x(s)) - f(y(s \cdot (y(s)))x(s))|$$

$$+ |f(x(s) \cdot (y(s)))y(s)) - f(y(s))| < \varepsilon.$$

This contradicts that $(x(s), y(s)) \in \mathcal{A}_e$.

Corollary 5. If G is a topological group, S is an abelian subsemigroup of G where $\text{cl}(S)$ is compact, then the pair (S, G) has property P.

Proof. $\text{cl}(S)$ is a compact topological group [3, Theorem 9.16]. So we can make the extension from S to $\text{cl}(S)$. Then by Theorem 3 we can make the extension from $\text{cl}(S)$ to G.

Finally we will show that whenever we have an extension, we have a norm preserving extension.

Proposition 6. If S is a subsemigroup of a topological semigroup T and the pair (S, T) has property P, then given $f \in \text{LUC}(S)$ there is a $g \in \text{LUC}(T)$ such that $g|_S = f$ and $\|g\| = \|f\|.$

Proof. Let $F \in \text{LUC}(T)$ be an extension of $f \in \text{LUC}(S)$. If $g = (F \|f\|) \vee (-\|f\|)$ where $\|f\|$ and $-\|f\|$ are constant functions, then $g \in \text{LUC}(T)$ [8, Lemma 1.1] and is the desired norm preserving extension of f.

Bibliography

Department of Mathematics, La Salle College, Philadelphia, Pennsylvania 19141