Martin’s axiom and saturated models
HTML articles powered by AMS MathViewer
- by Erik Ellentuck and R. v. B. Rucker PDF
- Proc. Amer. Math. Soc. 34 (1972), 243-249 Request permission
Abstract:
${2^{{\aleph _0}}} > {\aleph _1}$ is consistent with the existence of an ultrafilter F on $\omega$ such that for every countable structure $\mathfrak {A}$ the ultrapower ${\mathfrak {A}^\omega }/F$ is saturated.References
- H. Jerome Keisler, Ultraproducts and saturated models, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 178–186. MR 0168483
- Kenneth Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299–306. MR 314619, DOI 10.1090/S0002-9947-1972-0314619-7
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- Michael Morley and Robert Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37–57. MR 150032, DOI 10.7146/math.scand.a-10648 D. Scott and R. M. Solovay, Boolean valued model of set theory, Proc. Sympos. Pure Math., vol. 13, part II, Amer. Math. Soc., Providence, R.I. (to appear).
- R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245. MR 294139, DOI 10.2307/1970860
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 243-249
- MSC: Primary 02K05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0290960-7
- MathSciNet review: 0290960