Nonconstant endomorphisms of lattices
Author:
J. Sichler
Journal:
Proc. Amer. Math. Soc. 34 (1972), 67-70
MSC:
Primary 06A20
DOI:
https://doi.org/10.1090/S0002-9939-1972-0291032-8
MathSciNet review:
0291032
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: There is a proper class of pairwise nonisomorphic lattices whose monoids of all nonconstant endomorphisms are isomorphic to a given monoid M.
- C. C. Chen and G. Grätzer, On the construction of complemented lattices, J. Algebra 11 (1969), 56–63. MR 232715, DOI https://doi.org/10.1016/0021-8693%2869%2990101-X
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817
- G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639–647. MR 277442
- Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392–406. MR 191858
- Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis 1 (1971), no. 1, 97–103. MR 285580, DOI https://doi.org/10.1007/BF02944963
- P. Hell, Full embeddings into some cateogries of graphs, Algebra Universalis 2 (1972), 129–141. MR 316314, DOI https://doi.org/10.1007/BF02945020
- Bjarni Jónsson, Sublattices of a free lattice, Canadian J. Math. 13 (1961), 256–264. MR 123493, DOI https://doi.org/10.4153/CJM-1961-021-0
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A20
Retrieve articles in all journals with MSC: 06A20
Additional Information
Keywords:
Lattice,
homomorphism,
category
Article copyright:
© Copyright 1972
American Mathematical Society