Nonconstant endomorphisms of lattices
HTML articles powered by AMS MathViewer
- by J. Sichler
- Proc. Amer. Math. Soc. 34 (1972), 67-70
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291032-8
- PDF | Request permission
Abstract:
There is a proper class of pairwise nonisomorphic lattices whose monoids of all nonconstant endomorphisms are isomorphic to a given monoid M.References
- C. C. Chen and G. Grätzer, On the construction of complemented lattices, J. Algebra 11 (1969), 56–63. MR 232715, DOI 10.1016/0021-8693(69)90101-X
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817
- G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639–647. MR 277442
- Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392–406. MR 191858
- Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis 1 (1971), no. 1, 97–103. MR 285580, DOI 10.1007/BF02944963
- P. Hell, Full embeddings into some cateogries of graphs, Algebra Universalis 2 (1972), 129–141. MR 316314, DOI 10.1007/BF02945020
- Bjarni Jónsson, Sublattices of a free lattice, Canadian J. Math. 13 (1961), 256–264. MR 123493, DOI 10.4153/CJM-1961-021-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 67-70
- MSC: Primary 06A20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291032-8
- MathSciNet review: 0291032