Meet-irreducible elements in implicative lattices
HTML articles powered by AMS MathViewer
- by Dorothy P. Smith
- Proc. Amer. Math. Soc. 34 (1972), 57-62
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291035-3
- PDF | Request permission
Abstract:
A characterization of meet-irreducible elements and atoms in an implicative lattice is obtained and used to derive the following theorems. A complete lattice is implicative and every element has a meet-irreducible decomposition if and only if there are enough principal prime relative annihilator ideals to separate distinct elements. The MacNeille completion of an implicative lattice is an implicative lattice; furthermore the embedding preserves relative pseudocomplements, meet-irreducible elements and atoms.References
- V. K. Balachandran, On complete lattices and a problem of Birkhoff and Frink, Proc. Amer. Math. Soc. 9 (1955), 548–553. MR 72852, DOI 10.1090/S0002-9939-1955-0072852-1
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Peter Crawley, Regular embeddings which preserve lattice structure, Proc. Amer. Math. Soc. 13 (1962), 748–752. MR 0140451, DOI 10.1090/S0002-9939-1962-0140451-2
- Nenosuke Funayama, On the completion by cuts of distributive lattices, Proc. Imp. Acad. Tokyo 20 (1944), 1–2. MR 14063 V. Glivenko, Sur quelques points de la logique de Brouwer, Bull. Acad. Sci. Belgique 15 (1929), 183-188.
- H. M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), no. 3, 416–460. MR 1501929, DOI 10.1090/S0002-9947-1937-1501929-X
- Mark Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970), 377–386. MR 256951
- J. C. C. McKinsey and Alfred Tarski, On closed elements in closure algebras, Ann. of Math. (2) 47 (1946), 122–162. MR 15037, DOI 10.2307/1969038
- William C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128–142. MR 176944, DOI 10.1090/S0002-9947-1965-0176944-9 T. Newman, Homomorphic images of compactly generated lattices, Doctoral Dissertation, University of Texas, Austin, Tex., 1967 (unpublished).
- Helena Rasiowa and Roman Sikorski, The mathematics of metamathematics, Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963. MR 0163850 M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis Mat. Fys. 67 (1937), 1-25.
- Morgan Ward, Structure residuation, Ann. of Math. (2) 39 (1938), no. 3, 558–568. MR 1503424, DOI 10.2307/1968634
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 57-62
- MSC: Primary 06A35
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291035-3
- MathSciNet review: 0291035