Coherence of polynomial rings over semisimple algebraic algebras
HTML articles powered by AMS MathViewer
- by Andrew B. Carson PDF
- Proc. Amer. Math. Soc. 34 (1972), 20-24 Request permission
Abstract:
It is shown that polynomial rings in finitely or infinitely many central indeterminates, over a commutative algebraic algebra without nilpotent elements, are coherent. If the coefficient ring is algebraic over the real numbers, then the commutativity assumption, above, may be dropped.References
- Richard F. Arens and Irving Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457–481. MR 25453, DOI 10.1090/S0002-9947-1948-0025453-6 N. Bourbaki, Eléments de mathématique. Fase. XXVII. Algèbre commutative. Chap. 1: Modules plats. Chap. 2: Localisation, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Andrew B. Carson, Representation of semi-simple algebraic algebras, J. Algebra 24 (1973), 245–257. MR 309931, DOI 10.1016/0021-8693(73)90136-1
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Morton E. Harris, Some results on coherent rings, Proc. Amer. Math. Soc. 17 (1966), 474–479. MR 193111, DOI 10.1090/S0002-9939-1966-0193111-X
- Morton E. Harris, Some results on coherent rings. II, Glasgow Math. J. 8 (1967), 123–126. MR 223405, DOI 10.1017/S0017089500000185
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR 0217056 J. Soublin, Anneaux cohérents, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A183-A186. MR 38 #1121. —, Un anneau cohérent dont l’anneau des polynômes n’est pas cohérent, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A241-A243, MR 38 #1123.
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 20-24
- MSC: Primary 16A48
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291216-9
- MathSciNet review: 0291216