The two-parameter Sturm-Liouville problem for ordinary differential equations. II
HTML articles powered by AMS MathViewer
- by B. D. Sleeman
- Proc. Amer. Math. Soc. 34 (1972), 165-170
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291544-7
- PDF | Request permission
Abstract:
The object of this note is to discuss the existence under fairly general conditions of solutions of the two-parameter eigenvalue problem defined by the pair of differential equations \[ {d^2}{y_i}/dx_i^2 + \{ {q_i}({x_i};\lambda ,\mu ) + {r_i}({x_i})\} {y_i} = 0,\quad i = 1,2,{x_i} \in [0,1],\] and associated two-point Sturm-Liouville end conditions.References
- B. D. Sleeman, The two parameter Sturm-Liouville problem for ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A 69 (1970/71), 139–148. MR 291543
- M. Faierman, The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations, J. Differential Equations 5 (1969), 197–213. MR 232991, DOI 10.1016/0022-0396(69)90112-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 165-170
- MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291544-7
- MathSciNet review: 0291544