REFLEXIVITY OF $L(E, F)$

WILLIAM H. RUCKLE

Abstract. Let E and F be two Banach spaces both having the approximation property. The space $L(E, F)$ is reflexive if and only if (a) both E and F are reflexive, (b) every continuous linear operator from E into F is compact. Thus $L(l^p, l^q)$ is reflexive for $1 < q < p < \infty$.

In this note we piece together some results of Grothendieck to ascertain when $L(E, F)$, the space of continuous linear operators from a Banach space E to a Banach space F, is reflexive. This condition sometimes holds when both E and F have infinite dimension. This demolishes an apparently popular supposition that $L(E, F)$ is reflexive only if one space is reflexive and the other finite dimensional.

The space of compact linear operators from E to F is denoted by $C(E, F)$. It is known that $C(E, F)$ is a closed subspace of $L(E, F)$. A Banach space E is said to have the approximation property if for each Banach space F, $C(E, F)$ is the closure in $L(E, F)$ of those operators of finite rank; in other words if $C(E, F)$ is the closed linear span of the set of all one dimensional operators $x' \otimes y$. The value of $x' \otimes y$ with $x' \in E'$, the dual space of E, and $y \in F$ is given by the formula

$$x' \otimes y(x) = \langle x', x' \rangle y, \quad x \in E.$$

Equivalent formulations of the approximation property can be found on pp. 164-165 of [1].

Theorem. Let E and F be two Banach spaces both having the approximation property. The space $L(E, F)$ is reflexive if and only if the following pair of conditions holds:

(a) both E and F are reflexive,
(b) $L(E, F) = C(E, F)$.

Proof. Suppose ϕ is in $C(E, F)'$. For $x' \in E'$ the equation

$$\langle T_\phi x', y \rangle = \langle x' \otimes y, \phi \rangle, \quad y \in F,$$

Presented to the Society, November 21, 1970 under the title Reflexivity of $L(E, F)$; received by the editors November 18, 1970.

AMS 1969 subject classifications. Primary 4610.

Key words and phrases. Reflexivity, continuous linear operator, compact linear operator, integral operator, nuclear operator.

© American Mathematical Society 1972
determines a linear functional $T_\phi x'$ on F. Since $|\langle T_\phi x', y \rangle| \leq \|x' \otimes y\| \|\phi\| = \|x'\| \|y\| \|\phi\|$, $T_\phi x'$ is in F' and $T_\phi \in L(E', F')$ with $\|T_\phi\| \leq \|\phi\|$. If $T_\phi = T_\theta$ then
\[\langle x' \otimes y, \phi \rangle = \langle x' \otimes y, \theta \rangle \]
for each x' in E' and y in F. Since E has the approximation property we have $\phi = 0$. The space of all T_ϕ for ϕ in $C(E, F)'$ is called the space of integral operators and is denoted by $I(E, F)$. Let $I(E, F)$ be given the topology of identification with $C(E, F)'$.

For x'' in E'' and y' in F', $x'' \otimes y'$ is in $I(E', F')$ determined by ϕ in $C(E, F)$ for which
\[\langle T, \phi \rangle = \langle T'y', x'' \rangle, \quad T \in C(E, F). \]
Here T' denotes the adjoint of T. The norm of this ϕ is $\|x''\| \|y'\|$; thus $\|x' \otimes y'\|_I = \|x''\| \|y'\|$.

Since $I(E', F')$ is complete it must contain all operators of the form
\[S = \sum_{n=1}^{\infty} x_n' \otimes y_n' \]
where $\sum_{n=1}^{\infty} \|x_n'\| \|y_n'\| < \infty$. The expansion for S given by (1) is not unique. An operator having such an expansion is called nuclear; the set of all nuclear operators in $I(E', F')$ is denoted by $N(E', F')$. Clearly, $N(E', F')$ is contained in the closed linear span in $I(E', F')$ of all one dimensional operators $x' \otimes y'$.

Necessity of (a). Let y_0 be a vector in F with $\|y_0\| = 1$. The correspondence of x' in E' to $x' \otimes y_0$ in $L(E, F)$ is an isometry for E' onto a subspace of $L(E, F)$. Thus if $L(E, F)$ is reflexive so is E' and hence E. A similar proof shows F reflexive.

Necessity of (b). Every ϕ in $C(E, F)''$ can be considered as a continuous linear functional on $I(E', F')$. For each s'' in E'' we determine $T_\phi x''$ in F'' by the rule
\[\langle y', T_\phi x'' \rangle = \langle x'' \otimes y', \phi \rangle, \quad y' \in F'. \]
Since
\[|\langle x'' \otimes y', \phi \rangle| \leq \|x''\| \|y'\| \|\phi\|, \]
it follows that T_ϕ is continuous and $\|T_\phi\| \leq \|\phi\|$. The correspondence of ϕ in $C(E, F)''$ to T_ϕ in $L(E'', F')$ is linear and continuous. In order to show it is one-to-one we appeal to a result of Grothendieck [1, p. 134] which asserts that if F' is reflexive then $I(E', F') = N(E', F')$ and
\[\|S\|_I = \inf \left\{ \sum_{n=1}^{\infty} \|x_n''\| \|y_n\| : S \text{ has the form (1)} \right\}. \]
If \(T_\phi = 0 \) we then have
\[
\langle y', T_\phi x'' \rangle = \langle x'' \otimes y', \phi \rangle = 0
\]
for each one-dimensional operator \(x'' \otimes y' \), from which we conclude \(\phi = 0 \).

The correspondence from \(\phi \) in \(C(E, F)'' \) to \(T_\phi \) in \(L(E'', F'') \) is also onto when \(F' \) is reflexive. For \(T \) in \(L(E'', F'') \) define \(\phi \) on \(N(E', F') \) by
\[
\langle \sum_{n=1}^{\infty} x_n'' \otimes y'_n, \phi \rangle = \sum_{n=1}^{\infty} \langle Tx_n'', y'_n \rangle.
\]
Since \(F'' = F \) has the approximation property, the value of \(\phi \) does not depend on the representation of \(\sum_{n=1}^{\infty} x''_n \otimes y'_n \) [1, pp. 164–165]. We then have
\[
\sum_{n=1}^{\infty} |\langle Tx_n'', y'_n \rangle| \leq \|T\| \sum_{n=1}^{\infty} \|x''_n\| \|y'_n\|,
\]
so that for each \(S \) in \(N(E', F') \),
\[
|\langle S, \phi \rangle| \leq \|S\| \|T\|.
\]
Therefore \(\phi \) is continuous on \(I(E', F') \) and \(T = T_\phi \).

For each \(T \) in \(L(E'', F'') = L(E, F) \) there is \(\phi \) in \(C(E, F)'' \) such that \(\langle x' \otimes y', \phi \rangle = \langle Tx, y' \rangle \) for each \(x \in E = E'' \) and \(y' \in F' \). If \(L(E, F) \) is reflexive, so is \(C(E, F) \) so there is \(T_0 \) in \(C(E, F) \) for which
\[
\langle x \otimes y', \phi \rangle = \langle T_0, x \otimes y' \rangle = \langle x, T_0' y' \rangle = \langle T_0 x, y' \rangle
\]
for \(x \in E \) and \(y' \in F' \). Thus \(T_0 = T \) so that \(T \in C(E, F) \).

Sufficiency of (a) and (b). We proceed as in the proof of the necessity of (b) to the point of showing that the correspondence from \(\phi \) in \(C(E, F)'' \) to \(T_\phi \) in \(L(E'', F'') \) is one-to-one and onto. Because of (a), \(L(E'', F'') = L(E, F) \) and because of (b), \(L(E, F) = C(E, F) \). For each \(\phi \) in \(C(E, F)'' \) there is thus \(T \) in \(C(E, F) \) with \(\langle y' \otimes x, \phi \rangle = \langle Tx, y' \rangle \) for each \(x \) in \(E \) and \(y' \) in \(F' \). But this implies that for \(S = \sum_{n=1}^{\infty} x_n \otimes y'_n \) in \(I(E', F') \) we have
\[
\langle S, \phi \rangle = \sum_{n=1}^{\infty} \langle Tx_n, y'_n \rangle
\]
so that \(C(E, F) = L(E, F) \) is reflexive.

Corollary. If \(1 < q < p < \infty \) then \(L(p, l^q) \) is reflexive.

Proof. By Theorem 1 of [2] every bounded linear operator from \(l^p \) to \(l^q \) is compact.
Other results on compactness of operators from $L^p(\mu)$ to $L^q(\mu)$ can be found in [3], and the interested reader can determine when $L(L^p(\mu), L^q(\mu))$ is reflexive in such situations.

REFERENCES

Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631