Nonasymptotically abelian factors of type $\textrm {III}$
HTML articles powered by AMS MathViewer
- by Wai Mee Ching and Paul Willig PDF
- Proc. Amer. Math. Soc. 34 (1972), 102-104 Request permission
Abstract:
There exists a continuum of nonisomorphic nonasymptotically abelian type III factors on separable Hilbert spaces.References
- Wai-mee Ching, Non-isomorphic non-hyperfinite factors, Canadian J. Math. 21 (1969), 1293–1308. MR 254614, DOI 10.4153/CJM-1969-142-6
- Wai-mee Ching, A continuum of non-isomorphic non-hyperfinite factors, Comm. Pure Appl. Math. 23 (1970), 921–937. MR 279593, DOI 10.1002/cpa.3160230605
- J. Dixmier and E. C. Lance, Deux nouveaux facteurs de type $\textrm {II}_{1}$, Invent. Math. 7 (1969), 226–234 (French). MR 248535, DOI 10.1007/BF01404307 M. S. Glaser, Asymptotic abelianness of infinite factors, Ph.D. Thesis, University of Pennsylvania, Philadelphia, Pa.
- L. Pukánszky, Some examples of factors, Publ. Math. Debrecen 4 (1956), 135–156. MR 80894
- Shôichirô Sakai, Asymptotically abelian $\textrm {II}_{1}$-factors, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968/1969), 299–307. MR 0248533, DOI 10.2977/prims/1195194878
- Paul Willig, $B(H)$ is very noncommutative, Proc. Amer. Math. Soc. 24 (1970), 204–205. MR 248537, DOI 10.1090/S0002-9939-1970-0248537-3
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 102-104
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291820-8
- MathSciNet review: 0291820