Orthogonality and nonlinear functionals on Banach spaces
HTML articles powered by AMS MathViewer
- by K. Sundaresan PDF
- Proc. Amer. Math. Soc. 34 (1972), 187-190 Request permission
Abstract:
If B is a real Banach space and $x,y \in B$, then x is said to be orthogonal to $y\;(x \bot y)$ if $\left \| {x + \lambda y} \right \| \geqq \left \| x \right \|$ for all real numbers $\lambda$. A function $F:B \to E$, where E is a topological vector space, is said to be additive if it is continuous and $F(x + y) = F(x) + F(y)$ whenever $x \bot y$. The purpose of the present paper is to characterize additive functions.References
- L. Drewnowski and W. Orlicz, On orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 883–888 (English, with Russian summary). MR 244755
- K. Sundaresan, Additive functionals on Orlicz spaces, Studia Math. 32 (1969), 269–276. MR 248513, DOI 10.4064/sm-32-3-270-276
- R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–302. MR 12199
- Robert C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292. MR 21241, DOI 10.1090/S0002-9947-1947-0021241-4
- Mahlon M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320–337. MR 22312, DOI 10.1090/S0002-9947-1947-0022312-9
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 187-190
- MSC: Primary 47A99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291835-X
- MathSciNet review: 0291835