Criteria for discrete spectrum of singular selfadjoint differential operators
HTML articles powered by AMS MathViewer
- by L. W. Rollins PDF
- Proc. Amer. Math. Soc. 34 (1972), 195-200 Request permission
Abstract:
Under certain conditions on the coefficients of symmetric singular differential operators of order 2n, selfadjoint extensions are shown to have a discrete spectrum. The results are proven specifically for the Friedrichs extension.References
- John V. Baxley, The Friedrichs extension of certain singular differential operators, Duke Math. J. 35 (1968), 455–462. MR 226446
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- M. S. P. Eastham, The least limit point of the spectrum associated with singular differential operators, Proc. Cambridge Philos. Soc. 67 (1970), 277–281. MR 252740, DOI 10.1017/s0305004100045552
- K. O. Friedrichs, Criteria for the discrete character of the spectra of ordinary differential operators, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 145–160. MR 0023415 M. A. Naĭmark, Linear differential operators, GITTL, Moscow, 1954; English transl., Part II, Ungar, New York, 1967. MR 16, 702; MR 41 #7485.
- Frédéric Riesz and Béla Sz.-Nagy, Leçons d’analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1953 (French). 2ème éd. MR 0056821
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 195-200
- MSC: Primary 47E05; Secondary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291883-X
- MathSciNet review: 0291883