contains an element of order
Author:
Albert Shar
Journal:
Proc. Amer. Math. Soc. 34 (1972), 303-306
MSC:
Primary 55E40
DOI:
https://doi.org/10.1090/S0002-9939-1972-0292079-8
MathSciNet review:
0292079
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the mth reduced product complex of
with n an even integer greater than 2 and m any integer greater than 2.
with attaching map
. Using a result of J. R. Hubbuck and a result of the author it is proven that the Whitehead product
is of order m.
- [1] K. A. Hardie, Higher Whitehead products, Quart. J. Math. Oxford Ser. (2) 12 (1961), 241–249. MR 141110, https://doi.org/10.1093/qmath/12.1.241
- [2] K. A. Hardie, A proof of the Nakaoka-Toda formula, Pacific J. Math. 14 (1964), 1249–1254. MR 172288
- [3] J. R. Hubbuck, Finitely generated cohomology Hopf algebras, Topology 9 (1970), 205–210. MR 261600, https://doi.org/10.1016/0040-9383(70)90009-1
- [4] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170–197. MR 73181, https://doi.org/10.2307/2007107
- [5] I. M. James, On the suspension triad, Ann. of Math. (2) 63 (1956), 191–247. MR 77922, https://doi.org/10.2307/1969607
- [6] I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383. MR 91467, https://doi.org/10.1090/S0002-9939-1957-0091467-4
- [7] Gerald J. Porter, Higher-order Whitehead products, Topology 3 (1965), 123–135. MR 174054, https://doi.org/10.1016/0040-9383(65)90039-X
- [8] Albert Shar, The homotopy groups of spaces whose cohomology is a 𝑍_{𝑝} truncated polynomial algebra, Proc. Amer. Math. Soc. 38 (1973), 172–178. MR 310877, https://doi.org/10.1090/S0002-9939-1973-0310877-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55E40
Retrieve articles in all journals with MSC: 55E40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1972-0292079-8
Keywords:
Reduced product space,
extensions,
Whitehead products,
Hopf invariant
Article copyright:
© Copyright 1972
American Mathematical Society