$\pi _{mn-}{}_{}{2}(S^{n}_{m-}{}_{}{2})$ contains an element of order $m$
HTML articles powered by AMS MathViewer
- by Albert Shar PDF
- Proc. Amer. Math. Soc. 34 (1972), 303-306 Request permission
Abstract:
Let $S_m^n$ be the mth reduced product complex of ${S^n}$ with n an even integer greater than 2 and m any integer greater than 2. $S_m^n = S_{m - 1}^n \cup {e^{nm}}$ with attaching map $[i, \cdots ,i] \in {\pi _{nm - 1}}(S_{m - 1}^n)$. Using a result of J. R. Hubbuck and a result of the author it is proven that the Whitehead product $[i,[i, \cdots ,i]] \in {\pi _{mn - 2}}(S_{m - 2}^n)$ is of order m.References
- K. A. Hardie, Higher Whitehead products, Quart. J. Math. Oxford Ser. (2) 12 (1961), 241–249. MR 141110, DOI 10.1093/qmath/12.1.241
- K. A. Hardie, A proof of the Nakaoka-Toda formula, Pacific J. Math. 14 (1964), 1249–1254. MR 172288
- J. R. Hubbuck, Finitely generated cohomology Hopf algebras, Topology 9 (1970), 205–210. MR 261600, DOI 10.1016/0040-9383(70)90009-1
- I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170–197. MR 73181, DOI 10.2307/2007107
- I. M. James, On the suspension triad, Ann. of Math. (2) 63 (1956), 191–247. MR 77922, DOI 10.2307/1969607
- I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383. MR 91467, DOI 10.1090/S0002-9939-1957-0091467-4
- Gerald J. Porter, Higher-order Whitehead products, Topology 3 (1965), 123–135. MR 174054, DOI 10.1016/0040-9383(65)90039-X
- Albert Shar, The homotopy groups of spaces whose cohomology is a $Z_{p}$ truncated polynomial algebra, Proc. Amer. Math. Soc. 38 (1973), 172–178. MR 310877, DOI 10.1090/S0002-9939-1973-0310877-X
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 303-306
- MSC: Primary 55E40
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292079-8
- MathSciNet review: 0292079