Nil subrings of endomorphism rings of modules
HTML articles powered by AMS MathViewer
- by Joe W. Fisher
- Proc. Amer. Math. Soc. 34 (1972), 75-78
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292878-2
- PDF | Request permission
Abstract:
Let M be an R-module and let ${\text {End}_R}(M)$ be the ring of all R-endomorphisms of M. If M is Artinian, then each nil subring of ${\text {End}_R}(M)$ is nilpotent. If M is Noetherian, then the indices of nilpotency of the nil subrings of ${\text {End}_R}(M)$ are bounded.References
- Joe W. Fisher, On the nilpotency of nil subrings, Canadian J. Math. 22 (1970), 1211–1216. MR 268216, DOI 10.4153/CJM-1970-139-1
- Joe W. Fisher, Nil subrings with bounded indices of nilpotency, J. Algebra 19 (1971), 509–516. MR 289554, DOI 10.1016/0021-8693(71)90083-4 —, Endomorphism rings of modules, Notices Amer. Math. Soc. 18 (1971), 619-620. Abstract #71T-A85. A. W. Goldie and L. W. Small, A note on rings of endomorphisms (to appear).
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Claudio Procesi and Lance Small, Endomorphism rings of modules over $\textrm {PI}$-algebras, Math. Z. 106 (1968), 178–180. MR 233846, DOI 10.1007/BF01110128
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 75-78
- MSC: Primary 16A64
- DOI: https://doi.org/10.1090/S0002-9939-1972-0292878-2
- MathSciNet review: 0292878