Two properties of $R^{N}$ with a compact group topology
HTML articles powered by AMS MathViewer
- by Kevin J. Sharpe PDF
- Proc. Amer. Math. Soc. 34 (1972), 267-269 Request permission
Abstract:
We let $R_c^N$ be a compact additive group, and we prove that if A is an $R_c^N$-measurable set, then one of the interiors of A and $A’$ in the usual topology for ${R^N}$ (written $R_u^N$) must be void. Also we show that the only functions from ${R^N}$ to a Hausdorff space that are both $R_u^N$-continuous and $R_c^N$-measurable are the constant functions.References
- Paul R. Halmos, Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), 877–878. MR 11301, DOI 10.1090/S0002-9904-1944-08255-4
- Douglas Hawley, Compact group topologies for $R$, Proc. Amer. Math. Soc. 30 (1971), 566–572. MR 281834, DOI 10.1090/S0002-9939-1971-0281834-5
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 267-269
- MSC: Primary 22C05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293002-2
- MathSciNet review: 0293002