Group extensions and discrete subgroups of Lie groups
HTML articles powered by AMS MathViewer
- by D. H. Lee PDF
- Proc. Amer. Math. Soc. 34 (1972), 299-302 Request permission
Abstract:
Let $\Gamma$ be a discrete uniform subgroup of a connected simply connected solvable Lie group S. It is shown how S is essentially determined by $\Gamma$, using the point of view of group extensions.References
- Louis Auslander, Solvable Lie groups acting on nilmanifolds, Amer. J. Math. 82 (1960), 653–660. MR 122909, DOI 10.2307/2372933
- Louis Auslander, Discrete uniform subgroups of solvable Lie groups, Trans. Amer. Math. Soc. 99 (1961), 398–402. MR 131490, DOI 10.1090/S0002-9947-1961-0131490-X
- W. T. van Est, A generalization of the Cartan-Leray spectral sequence. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20 (1958), 399–413. MR 0103467
- G. Hochschild, Group extensions of Lie groups, Ann. of Math. (2) 54 (1951), 96–109. MR 41858, DOI 10.2307/1969314
- A. I. Mal′cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. MR 125179, DOI 10.2307/1970281
- G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954), 1–27. MR 61611, DOI 10.2307/1969700
- Richard Tolimieri, Applications of the semisimple splitting, Bull. Amer. Math. Soc. 77 (1971), 275–280. MR 272942, DOI 10.1090/S0002-9904-1971-12718-0
- L. Auslander and R. Tolimieri, Splitting theorems and the structure of solvmanifolds, Ann. of Math. (2) 92 (1970), 164–173. MR 276995, DOI 10.2307/1970700
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 299-302
- MSC: Primary 22E40
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293006-X
- MathSciNet review: 0293006