Numerical range for certain classes of operators
HTML articles powered by AMS MathViewer
- by Richard Bouldin PDF
- Proc. Amer. Math. Soc. 34 (1972), 203-206 Request permission
Abstract:
We prove a basic result which relates the structure of the spectrum to the interior of the numerical range. Using this result we derive corollaries concerning compact operators, quasinilpotents, and finite dimensional operators. In particular, we characterize finite dimensional convexoid operators.References
- F. F. Bonsall, B. E. Cain, and Hans Schneider, The numerical range of a continuous mapping of a normed space, Aequationes Math. 2 (1968), 86–93. MR 232226, DOI 10.1007/BF01833492
- Richard Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467. MR 270186, DOI 10.1016/0022-247X(70)90270-2
- M. J. Crabb, Some results on the numerical range of an operator, J. London Math. Soc. (2) 2 (1970), 741–745. MR 271759, DOI 10.1112/jlms/2.Part_{4}.741
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- B. N. Moyls and M. D. Marcus, Field convexity of a square matrix, Proc. Amer. Math. Soc. 6 (1955), 981–983. MR 75921, DOI 10.1090/S0002-9939-1955-0075921-5
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618
- Frederick A. Valentine, Convex sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR 0170264
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 203-206
- MSC: Primary 47A10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0293424-X
- MathSciNet review: 0293424