COMPLEMENTING SETS OF n-TUPLES OF INTEGERS

MELVYN B. NATHANSON

Abstract. Let S, A_1, A_2, \ldots, A_p be finite nonempty sets of n-tuples of integers such that, if $a_i \in A_i$ for $i=1, 2, \ldots, p$, then $a_1 + a_2 + \cdots + a_p \in S$, and such that every $s \in S$ has a unique representation as a sum $s = a_1 + a_2 + \cdots + a_p$ with $a_i \in A_i$. If S is the cartesian product of n sets of integers, then each A_i is also the cartesian product of n sets of integers, and conversely.

Let S, A_1, A_2, \ldots, A_p be sets of n-tuples of integers. Define addition of n-tuples componentwise. Then S is the sum of A_1, A_2, \ldots, A_p, denoted $S = A_1 + A_2 + \cdots + A_p$, if $S = \{a_1 + a_2 + \cdots + a_p | a_i \in A_i$ for $i=1, 2, \ldots, p \}$. If S is the sum of A_1, A_2, \ldots, A_p, and if for each $s \in S$ there exist unique n-tuples $a_i \in A_i$ such that $s = a_1 + a_2 + \cdots + a_p$, then A_1, A_2, \ldots, A_p are called complementing sets for S, denoted $S \subseteq A_1 + A_2 + \cdots + A_p$. A set of n-tuples is proper if it is the cartesian product of n sets of integers. For positive integers u and v, let $S = \{0, 1, 2, \ldots, u\} \times \{0, 1, 2, \ldots, v\}$. If A_1 and A_2 are subsets of S such that $S \subseteq A_1 + A_2$, then Hansen [1] proved that A_1 and A_2 are proper. This result extends to the general case of arbitrary n and p, and S the cartesian product of any n finite sets of integers.

Theorem. Let S, A_1, A_2, \ldots, A_p be finite nonempty sets of n-tuples of integers such that $S \subseteq A_1 + A_2 + \cdots + A_p$. Then S is proper if and only if each A_i is proper.

Proof. Suppose that S is proper. By translation, it is enough to consider only the case in which all coordinates of all n-tuples of S, A_1, \ldots, A_p are nonnegative integers. Let $Z[X_1, \ldots, X_n]$ be the ring of polynomials in n variables with integral coefficients. Define F, G_1, G_2, \ldots, G_p in $Z[X_1, \ldots, X_n]$ by

$$F = \sum_{(a_1, a_2, \ldots, a_p) \in S} X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n},$$

$$G_i = \sum_{(a_1, a_2, \ldots, a_n) \in A_i} X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n}.$$
Since S is proper, there exist finite sets of nonnegative integers S_1, S_2, \ldots, S_n such that $S = S_1 \times S_2 \times \cdots \times S_n$. Then

\begin{equation}
F = \prod_{j=1}^{n} \left(\sum_{i_{j} \in S_{j}} X_{i}^{j} \right).
\end{equation}

The polynomial F is the product of irreducible polynomials, and by (1), each of these irreducibles is a polynomial in exactly one variable. Each G_i is also a product of irreducible polynomials. Since $A_1 + A_2 + \cdots + A_p \cong S$, it follows that $F = G_1 G_2 \cdots G_p$. Since $\mathbb{Z}[X_1, \ldots, X_n]$ is a unique factorization domain, each irreducible factor of each G_i is a factor of F, and so is a polynomial in exactly one variable. Thus there exist polynomials $g_{ij} \in \mathbb{Z}[X_j]$ for $i=1, 2, \ldots, p$ and $j=1, 2, \ldots, n$ such that $G_i = g_{i1} g_{i2} \cdots g_{in}$. Let A_{ij} be the finite set of nonnegative integers which are the powers of X_j occurring with nonzero coefficient in g_{ij}. Then $A_i = A_{i1} \times A_{i2} \times \cdots \times A_{in}$ for $i=1, 2, \ldots, p$, and A_i is proper. (Moreover, $A_{i1} + A_{i2} + \cdots + A_{ip} \cong S_i$ for $j=1, 2, \ldots, n$.)

Conversely, suppose that each A_i is proper. Then there exist finite sets of integers A_{ij} for $i=1, 2, \ldots, p$ and $j=1, 2, \ldots, n$ such that $A_i = A_{i1} \times A_{i2} \times \cdots \times A_{in}$. Let $S_j = A_{1j} + A_{2j} + \cdots + A_{pj}$ for $j=1, 2, \ldots, n$. Then $S = S_1 \times S_2 \times \cdots \times S_n$, and so S is proper.

Remark. The theorem is false if S is the cartesian product of infinite sets. If \mathbb{N} is the set of nonnegative integers, there exist sets A_1 and A_2 which are not proper but satisfy $A_1 + A_2 \cong \mathbb{N} \times \mathbb{N}$. Hansen [1] and Niven [2] have determined all sets A_1 and A_2 such that $A_1 + A_2 \cong \mathbb{N} \times \mathbb{N}$.

References

University of Rochester, Rochester, New York 14627

Current address: Southern Illinois University, Carbondale, Illinois 62901