On the Noetherian-like rings of E. G. Evans
HTML articles powered by AMS MathViewer
- by William Heinzer and Jack Ohm PDF
- Proc. Amer. Math. Soc. 34 (1972), 73-74 Request permission
Abstract:
It is shown that if a commutative ring with identity R is nonnoetherian, then the polynomial ring in one indeterminate over R has an ideal with infinitely many maximal prime divisors (in the sense of Nagata).References
- E. Graham Evans Jr., Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505–512. MR 272773, DOI 10.1090/S0002-9947-1971-0272773-9
- William Heinzer and Jack Ohm, Locally noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273–284. MR 280472, DOI 10.1090/S0002-9947-1971-0280472-2
- Wolfgang Krull, Über Laskersche Ringe, Rend. Circ. Mat. Palermo (2) 7 (1958), 155–166 (German). MR 124350, DOI 10.1007/BF02854525
- Douglas H. Underwood, On some uniqueness questions in primary representations of ideals, J. Math. Kyoto Univ. 9 (1969), 69–94. MR 246865, DOI 10.1215/kjm/1250524012
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 73-74
- MSC: Primary 13E05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294316-2
- MathSciNet review: 0294316