ON THE NOETHERIAN-LIKE RINGS OF E. G. EVANS

WILLIAM HEINZER AND JACK OHM¹

ABSTRACT. It is shown that if a commutative ring with identity R is nonnoetherian, then the polynomial ring in one indeterminate over R has an ideal with infinitely many maximal prime divisors (in the sense of Nagata).

Let R denote a commutative ring with 1, and for any ideal A of R, let $\mathscr{Z}(A) = \{r \in R | \text{there exists } s \in R \setminus A \text{ such that } rs \in A\}$. (By "ideal" we shall always mean ideal $\neq R$. The notation $R \setminus A$ denotes the set-complement of A in R.) $\mathscr{Z}(A)$ is merely the set of zero-divisors on the R-module R/A and is always a union of prime ideals of R. Evans [1] calls R a ZD-ring (zero-divisor ring) if for any ideal A of R, $\mathscr{Z}(A)$ is a union of finitely many prime ideals. We shall prove here the following:

THEOREM. R is noetherian if (and only if) the polynomial ring in one indeterminate R[X] is a ZD-ring.

Evans has proved in [1] the 2 indeterminate analogue of this theorem (which follows from the theorem) and the special case of the theorem for R containing an infinite field.

A prime ideal P of R such that P is maximal with respect to the property of being contained in $\mathscr{Z}(A)$ is called a maximal N-prime (for Nagataprime) of A. Note that such a prime contains A and that $\mathscr{Z}(A)$ is the union of the maximal N-primes of A. (See [2] and [4] for a perspective on the associated primes of an ideal.)

PROOF OF THEOREM. Suppose R is not noetherian. Then there exists a strictly ascending chain $(0) < (a_1) < (a_1, a_2) < \cdots < (a_1, \cdots, a_n) < \cdots$ of ideals of R. Let $f_0 = X$, $f_1 = 1 + X$, \cdots , $f_i = 1 + f_0 f_1 \cdots f_{i-1}$, \cdots . We wish to show that the ideal $A = (a_1 f_1, a_2 f_1 f_2, \cdots, a_n f_1 \cdots f_n, \cdots)$ in R[X] has an infinite number of maximal N-primes and hence has the property that $\mathscr{Z}(A)$ is not a finite union of prime ideals. We show first that each $f_i \in \mathscr{Z}(A)$. Since $A \subset (f_1)$ and f_1 is a monic polynomial of positive degree in R[X], it follows that $A \cap R = (0)$. Hence $a_1 \notin A$, so $a_1 f_1 \in A$ implies that $f_1 \in \mathscr{Z}(A)$. Similarly, to show $f_n \in \mathscr{Z}(A)$, we wish to show $a_n f_1 \cdots f_{n-1} \notin A$. Consider

© American Mathematical Society 1972

Received by the editors September 16, 1971.

AMS 1970 subject classifications. Primary 13E05, 13F20.

Key words and phrases. Noetherian ring, zero-divisor ring, maximal N-prime.

¹ The authors were supported by National Science Foundation grants GP-29326 and GP-29104.

the residue class ring $R/(a_1, \dots, a_{n-1}) = R'$. The image of the ideal A in R'[X] is generated by the elements $a'_n f'_1 \cdots f'_n$, $a'_{n+1} f'_1 \cdots f'_{n+1}$, \cdots , where "'" denotes image in R'[X]. It will suffice to show that

 $a'_{n}f'_{1}\cdots f'_{n-1}\notin (a'_{n}f'_{1}\cdots f'_{n}, a'_{n+1}f'_{1}\cdots f'_{n+1}, \cdots);$

and since $f'_1 \cdots f'_{n-1}$ is a monic polynomial in R'[X], this is equivalent to showing that $a'_n \notin (a'_n f'_n, a'_{n+1} f'_n f'_{n+1}, \cdots) \subset (f'_n)$. Since f'_n is a monic polynomial of positive degree in R'[X], we have $(f'_n) \cap R' = (0)$. Thus $a'_n \notin (a'_n f'_n, a'_{n+1} f'_n f'_{n+1}, \cdots)$; hence we have proved $f_n \in \mathscr{Z}(A)$.

Consider now f_i and f_j for $i \neq j$. Clearly no prime ideal of R[X] contains both f_i and f_j . Since each f_i is in $\mathscr{Z}(A)$ and hence is in some maximal N-prime of A, it then follows that A has infinitely many maximal Nprimes. Q.E.D.²

A Lasker ring is one for which every ideal is a finite intersection of primary ideals. Such rings have been studied by Krull [3], and Evans has observed that every Lasker ring is a ZD-ring. Thus a consequence of the above theorem is that R is noetherian if (and only if) R[X] is Lasker.

We can add one further bit of information on the relationship between the ZD and noetherian properties.

PROPOSITION. If R is a ZD-ring and R_P is noetherian for every prime ideal P of R, then R is noetherian.

PROOF. By [2, Corollary 1.4] it suffices to show that every ideal A of R has only finitely many B_w -primes (a B_w -prime, or weak-Bourbaki prime, of A is a prime ideal P such that P is a minimal prime divisor of A:x for some $x \in R$). If P is a B_w -prime of A, then P is contained in a maximal N-prime of A; and since R is a ZD-ring, A has only a finite number of maximal N-primes, say Q_1, \dots, Q_n . Moreover, P is a B_w -prime of A in R and $P \subset Q_i$ imply PR_{Q_i} is a B_w -prime of AR_{Q_i} [2, Proposition 1.2]. Since R_{Q_i} is noetherian, AR_{Q_i} has only a finite number of B_w -primes.

References

1. E. G. Evans, Zero divisors in noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505-512.

2. W. Heinzer and J. Ohm, Locally noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273-284.

3. W. Krull, Über Laskersche Ringe, Rend. Circ. Mat. Palermo (2) 7 (1958), 155–166. MR 23 #A1664.

4. D. Underwood, On some uniqueness questions in primary representations of ideals, J. Math. Kyoto Univ. 9 (1969), 69-94. MR 40 #134.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, LAFAYETTE, INDIANA 47907

² We are indebted to the referee for suggesting a judicious choice of the f_i 's, thus considerably shortening our original proof.