The zeta function of toral endomorphisms
HTML articles powered by AMS MathViewer
- by James W. England
- Proc. Amer. Math. Soc. 34 (1972), 321-322
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294361-7
- PDF | Request permission
Abstract:
In this note we give a completely elementary way to compute the number of fixed points of a certain class of toral endomorphisms. This, in turn, gives the zeta function of these endomorphisms.References
- Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, vol. 3, Mathematical Society of Japan, Tokyo, 1956. MR 0097489
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 321-322
- MSC: Primary 15A15; Secondary 54H99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294361-7
- MathSciNet review: 0294361